A Direct-Reading MEMS Conductivity Sensor with a Parallel-Symmetric Four-Electrode Configuration
Abstract
:1. Introduction
2. Working Principle of Sensor
3. Design and Fabrication
3.1. Structure and Package Design
3.2. Structure and Package Design
3.3. Measurement Hardware and Algorithm
4. Experimental Method
4.1. Conductivity Sensor Calibration
4.1.1. The Laboratory Calibration
4.1.2. Third Party Mechanism Calibration
4.2. Temperature Calibration
5. Results and Discussion
5.1. Range and Precision of Sensor
5.2. Performance Consistency
5.3. Performance of Temperature Compensation and Salinity Testing
5.4. Sensor Accuracy Test and Performance Comparison
Sensor | Accuracy | Range | Chip size |
---|---|---|---|
Hyldgrad multi-sensor system [23] | ±0.6 mS/cm | - | 4 mm × 4 mm |
Broadbent PCB MEMS CTD [24] | - | 2–70 mS/cm | 18 mm × 28 mm |
Huangxi CT sensor [11] | ±0.03 mS/cm | 25–55 mS/cm | 10 mm × 20 mm |
Chaonan Wu CT sensor [13] | ±0.08 mS/cm | 0–101 mS/cm | 12 mm × 12 mm |
Our conductivity sensor | ±0.073 mS/cm (0–70 mS/cm) | 0–107.41 mS/cm | 17 mm × 7.5 mm |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nag, A.; Mukhopadhyay, S.C.; Kosel, J. Sensing system for salinity testing using laser-induced graphene sensors. Sens. Actuators A Phys. 2017, 264, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Pawlowicz, R.; Feistel, R.; McDougall, T.J.; Ridout, P.; Seitz, S.; Wolf, H. Metrological challenges for measurements of key climatological observables Part 2: Oceanic salinity. Metrologia 2016, 53, R12–R25. [Google Scholar] [CrossRef]
- Lewis, E. The practical salinity scale 1978 and its antecedents. IEEE J. Ocean. Eng. 1980, 5, 3–8. [Google Scholar] [CrossRef]
- Jijesh, J.J.; Shivashankar; Susmitha, M.; Bhanu, M.; Sindhanakeri, P. Development of a CTD Sensor Subsystem for Oceanographic Application. In Proceedings of the 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; pp. 1487–1492. [Google Scholar]
- Venkatesan, R.; Ramesh, K.; Arul Muthiah, M.; Thirumurugan, K.; Atmanand, M.A. Analysis of drift characteristic in conductivity and temperature sensors used in Moored buoy system. Ocean Eng. 2019, 171, 151–156. [Google Scholar] [CrossRef]
- Broadbent, H.A.; Ketterl, T.P.; Silverman, A.M.; Torres, J.J. Development of a CTD biotag: Challenges and pitfalls. Deep Sea Res. Part II: Top. Stud. Oceanogr. 2013, 88–89, 131–136. [Google Scholar] [CrossRef]
- Marcelli, M.; Piermattei, V.; Madonia, A.; Mainardi, U. Design and application of new low-cost instruments for marine environmental research. Sensors 2014, 14, 23348–23364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oiler, J.; Shock, E.; Hartnett, H.; Dombard, A.J.; Yu, H. Harsh Environment Sensor Array-Enabled Hot Spring Mapping. IEEE Sens. J. 2014, 14, 3418–3425. [Google Scholar] [CrossRef]
- Broadbent, H.A.; Ivanov, S.Z.; Fries, D.P. A miniature, low cost CTD system for coastal salinity measurements. Meas. Sci. Technol. 2007, 18, 3295–3302. [Google Scholar] [CrossRef]
- Aravamudhan, S.; Bhat, S.; Bethala, B.; Bhansali, S.; Langebrake, L. MEMS based Conductivity-Temperature-Depth (CTD) sensor for harsh oceanic environment. In Proceedings of the Oceans 2005 Conference, Washington, DC, USA, 17–23 September 2005; pp. 1785–1789. [Google Scholar]
- Huang, X.; Pascal, R.W.; Chamberlain, K.; Banks, C.J.; Mowlem, M.; Morgan, H. A Miniature, High Precision Conductivity and Temperature Sensor System for Ocean Monitoring. IEEE Sens. J. 2011, 11, 3246–3252. [Google Scholar] [CrossRef]
- Kim, M.; Choi, W.; Lim, H.; Yang, S. Integrated microfluidic-based sensor module for real-time measurement of temperature, conductivity, and salinity to monitor reverse osmosis. Desalination 2013, 317, 166–174. [Google Scholar] [CrossRef]
- Wu, C.; Gao, W.; Zou, J.; Jin, Q.; Jian, J. Design and Batch Microfabrication of a High Precision Conductivity and Temperature Sensor for Marine Measurement. IEEE Sens. J. 2020, 20, 10179–10186. [Google Scholar] [CrossRef]
- Gong, W.D.; Mowlem, M.; Kraft, M.; Morgan, H. Oceanographic Sensor for in-situ temperature and conductivity monitoring. In Proceedings of the International Conference OCEANS 2008 and MTS/IEEE Kobe Techno-Ocean, Kobe, Japan, 8–11 April 2008; pp. 42–47. [Google Scholar]
- Li, X.; Meijer, G.C.M. A Low-Cost and Accurate Interface for Four-Electrode Conductivity Sensors. IEEE Trans. Instrum. Meas. 2005, 54, 2433–2437. [Google Scholar] [CrossRef] [Green Version]
- Ramos, P.M.; Pereira, J.M.D.; Ramos, H.M.G.; Ribeiro, A.L. A Four-Terminal Water-Quality-Monitoring Conductivity Sensor. IEEE Trans. Instrum. Meas. 2008, 57, 577–583. [Google Scholar] [CrossRef]
- Horiuchi, T.; Wolk, F. Long-term stability of a new conductivity-temperature sensor tested on the VENUS cabled observatory. In Proceedings of the OCEANS’10 IEEE SYDNEY, Sydney, Australia, 24–27 May 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Fougere, A.J. New non-external field inductive conductivity sensor (NXIC) for long term deployments in biologically active regions. In Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158), Providence, RI, USA, 11–14 September 2000; Volume 621, pp. 623–630. [Google Scholar] [CrossRef]
- Natarajan, S.P.; Huffman, J.; Weller, T.M.; Fries, D.P. Contact-less toroidal fluid conductivity sensor based on RF detection. In Proceedings of the SENSORS, 2004 IEEE, Vienna, Austria, 24–27 October 2004; Volume 301, pp. 304–307. [Google Scholar] [CrossRef]
- Striggow, K.; Dankert, R. The exact theory of inductive conductivity sensors for oceanographic application. IEEE J. Ocean. Eng. 1985, 10, 179. [Google Scholar] [CrossRef]
- Aikens, D.A. Electrochemical methods, fundamentals and applications. J. Chem. Educ. 1983, 60, A25. [Google Scholar] [CrossRef]
- Barbero, G.; Lelidis, I. Analysis of Warburg’s impedance and its equivalent electric circuits. Phys. Chem. Chem. Phys. 2017, 19, 24934–24944. [Google Scholar] [CrossRef] [PubMed]
- Hyldgård, A.; Mortensen, D.; Birkelund, K.; Hansen, O.; Thomsen, E.V. Autonomous multi-sensor micro-system for measurement of ocean water salinity. Sens. Actuators A Phys. 2008, 147, 474–484. [Google Scholar] [CrossRef]
- Broadbent, H.A.; Ketterl, T.P.; Reid, C.S. A miniature rigid/flex salinity measurement device fabricated using printed circuit processing techniques. J. Micromech. Microeng. 2010, 20, 085008. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Jing, J.; Gao, R.; Guo, Y.; Yao, B.; Zhang, H.; Zhao, Z.; Zhang, W.; Wang, Y.; Zhang, Z.; et al. A Direct-Reading MEMS Conductivity Sensor with a Parallel-Symmetric Four-Electrode Configuration. Micromachines 2022, 13, 1153. https://doi.org/10.3390/mi13071153
Liao Z, Jing J, Gao R, Guo Y, Yao B, Zhang H, Zhao Z, Zhang W, Wang Y, Zhang Z, et al. A Direct-Reading MEMS Conductivity Sensor with a Parallel-Symmetric Four-Electrode Configuration. Micromachines. 2022; 13(7):1153. https://doi.org/10.3390/mi13071153
Chicago/Turabian StyleLiao, Zhiwei, Junmin Jing, Rui Gao, Yuzhen Guo, Bin Yao, Huiyu Zhang, Zhou Zhao, Wenjun Zhang, Yonghua Wang, Zengxing Zhang, and et al. 2022. "A Direct-Reading MEMS Conductivity Sensor with a Parallel-Symmetric Four-Electrode Configuration" Micromachines 13, no. 7: 1153. https://doi.org/10.3390/mi13071153
APA StyleLiao, Z., Jing, J., Gao, R., Guo, Y., Yao, B., Zhang, H., Zhao, Z., Zhang, W., Wang, Y., Zhang, Z., & Xue, C. (2022). A Direct-Reading MEMS Conductivity Sensor with a Parallel-Symmetric Four-Electrode Configuration. Micromachines, 13(7), 1153. https://doi.org/10.3390/mi13071153