The Spectral Response of the Dual Microdisk Resonator Based on BaTiO3 Resistive Random Access Memory
Abstract
:1. Introduction
2. Device Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miller, S.E. Integrated Optics: An Introduction. Bell Syst. Tech. J. 1969, 48, 2059–2069. [Google Scholar] [CrossRef]
- Onaka, H.; Miyata, H.; Ishikawa, G.; Otskula, K.; Ooi, H.; Kai, Y.; Kinoshita, S.; Seino, M.; Nishimoto, H.; Chikarna, T. 1.1 Tb/s WDM transmission over a 150 km 1.3 μm zero-dispersdion single mode fiber. In Proceedings of the Optical Fiber Communication Conference, San Jose, CA, USA, 25 February 1996. [Google Scholar]
- Mekonnen, G.G.; Schlaak, W.; Bach, H.-G.; Steingruber, R.; Seeger, A.; Enger, T.h.; Passenger, W.; Umbach, A.; Schramm, C.; Unterborsch, G.; et al. 37 GHz bandwidth InP-based photoreceiver OEIC suitable for data rates up to 50 Gb/s. IEEE Photonics Tech. Lett. 1999, 11, 257. [Google Scholar] [CrossRef]
- Imai, K.; Tsuritani, T.; Takeda, N.; Tanaka, K.; Edagawa, N.; Suzuki, M. 500 Gb/s (50 × 10.66 Gb/s) WDM transmission over 4000 km using broad-band EDFA’s and low dispersion slope fiber. IEEE Photonics Tech. Lett. 2000, 12, 909. [Google Scholar] [CrossRef]
- Kogelnik, H. High-capacity optical communications: Personal recollections. IEEE J. Sel. Top. Quant. Electron. 2000, 6, 1279. [Google Scholar] [CrossRef]
- Takahashi, H. Integrated Optics in Optical Communication Systems. In Proceedings of the Frontiers in Optics, Rochester, NY, USA, 24–28 October 2010. [Google Scholar]
- Hodara, H.; Mock, P.; Slemon, C. Review of OFC 2021: The future of optical networks and communications. Virtual conference 6–10 June 2021. Fiber Integr. Opt. 2021, 40, 185–228. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, S.-K.; Shim, J.-P.; Geum, D.-M.; Ju, G.; Kim, H.-S.; Lim, H.-J.; Lim, H.-R.; Han, J.-H.; Lee, S.; et al. Heterogeneous Integration Toward a Monolithic 3-D Chip Enabled by III–V and Ge Materials. IEEE J. Electron Dev. Soc. 2018, 6, 579–587. [Google Scholar] [CrossRef]
- Kaur, P.; Boes, A.; Ren, G.; Nguyen, T.G.; Roelkens, G.; Mitchell, A. Hybrid and heterogeneous photonic integration. APL Photonics 2021, 6, 061102. [Google Scholar] [CrossRef]
- Zimmermann, H. Silicon Optoelectronic Integrated Circuits, 2nd ed.; Springer Nature: Cham, Switzerland, 2018; pp. vii–viii. [Google Scholar]
- Cappelletti, P.; Golla, C.; Olivo, P.; Zanoni, E. (Eds.) Flush Memories; Kluwer: Norwell, MA, USA, 1999. [Google Scholar]
- Hu, C. (Ed.) Nonvolatile Semiconductor Memories: Technologies, Design, and Applications; IEEE Press: Piscataway, NJ, USA, 1991. [Google Scholar]
- Brown, W.D.; Brewer, J.E. (Eds.) Nonvolatile Semiconductor Memory Technology; IEEE Press: Piscataway, NJ, USA, 1998. [Google Scholar]
- Pavan, P.; Bez, R.; Olivo, P.; Zanoni, E. Flash memory cells—An overview. Proc. IEEE 1997, 85, 1248–1271. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann-Eifert, S.; Watanabe, T. Atomic Layer Deposition for Semiconductors; Springer: New York, NY, USA, 2014; pp. 149–171. [Google Scholar]
- Tehrani, S. Status and outlook of MRAM memory technology. In Proceedings of the 2006 International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006. [Google Scholar]
- Wong, H.-S.P.; Raoux, S.; Kim, S.B.; Liang, J.; Reifenberg, J.P.; Rajendran, B.; Asheghi, M.; Goodson, K.E. Phase Change Memory. Proc. IEEE 2010, 98, 2201–2227. [Google Scholar] [CrossRef]
- Wong, H.-S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Lee, B.; Chen, F.; Tsai, M.J. Metal–oxide RRAM. Proc. IEEE 2012, 100, 1951–1970. [Google Scholar] [CrossRef]
- Liu, M.; Hwang, H.Y.; Tao, H.; Strikwerda, A.C.; Fan, K.; Keiser, G.R.; Sternbach, A.J.; West, K.G.; Kittiwatanakul, S.; Lu, J.; et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Proc. Nature 2012, 487, 345. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, L.; Rahman, B.M.A.; Wu, X.; Lu, L.; Xu, Y.; Xu, J.; Song, J.; Hu, Z.; Xu, L.; et al. Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation. Proc. IEEE Photonics J. 2017, 10, 1–10. [Google Scholar] [CrossRef]
- Liang, H.; Soref, R.; Mu, J.; Majumdar, A.; Li, X.; Huang, W.P. Simulations of silicon-on-insulator channel-waveguide electrooptical 2 × 2 switches and 1 × 1 modulators using a Ge2Sb2Te5 self-holding layer. Proc. J. Lightwave Technol. 2015, 33, 1805–1813. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, H.; Zhou, L.; Lu, L.; Chen, J.; Rahman, B.M.A. Design of Ultra-Compact Optical Memristive Switches with GST as the Active Material. Proc. Micromachines 2019, 10, 453. [Google Scholar] [CrossRef] [Green Version]
- Emboras, A.; Goykhman, I.; Desiatov, B.; Mazurski, N.; Stern, L.; Shappir, J.; Levy, U. Nanoscale Plasmonic Memristor with Optical Readout Functionality. Proc. Nano Lett. 2013, 13, 6151. [Google Scholar] [CrossRef]
- Hoessbacher, C.; Fedoryshyn, Y.; Emboras, A.; Melikyan, A.; Kohl, M.; Hillerkuss, D.; Hafner, C.; Leuthold, J. The plasmonic memristor: A latching optical switch. Proc. Optica 2014, 1, 198. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, P.; Gaba, S.; Chang, T.; Pan, X.; Lu, W. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 2012, 3, 732. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, S.; Tan, W. An Ultra-Compact Design of Plasmonic Memristor with Low Loss and High Extinction Efficiency Based on Enhanced Interaction between Filament and Concentrated Plasmon. Proc. Photonics 2021, 8, 437. [Google Scholar] [CrossRef]
- Singh, L.; Sulabh, S.; Kaushik, V.; Rajput, S.; Mishra, R.D.; Kumar, M. Light Assisted Electro-Metallization in Resistive Switch With Optical Accessibility. Proc. J. Lightwave Technol. 2021, 39, 5869. [Google Scholar] [CrossRef]
- Singh, L.; Srivastava, S.; Rajput, S.; Kaushik, V.; Mishra, R.D.; Kumar, M. Optical switch with ultra high extinction ratio using electrically controlled metal diffusion. Proc. Opt. Lett. 2021, 46, 2626. [Google Scholar] [CrossRef]
- Battal, E.; Ozcan, A.; Okyay, A.K. Resistive Switching-based Electro-Optical Modulation. Proc. Adv. Opt. Mater. 2014, 2, 1149. [Google Scholar] [CrossRef] [Green Version]
- Chuang, R.W.; Fu, K.-L.; Zheng, Z.-Y. The integrated vertically coupled resistive random-access memory (ReRAM)-based microdisk resonator and the relevant performance evaluation. In Proceedings of SPIE; Integrated Optics: Devices, Materials, and Technologies XXIV; SPIE: Bellingham, WA, USA, 2020; Volume 1128327. [Google Scholar]
- Chuang, R.W.; Zheng, Z.-Y.; Huang, C.-L.; Liu, B.-L. Vertically-waveguide-coupled BaTiO3-based microdisk optical resonator equipped with the functionality of resistive random-access memory (ReRAM). In Proceedings of SPIE; Integrated Optics: Devices, Materials, and Technologies XXV; SPIE: Bellingham, WA, USA, 2021; Volume 116891Q. [Google Scholar]
- Parra, J.; Olivares, I.; Brimont, A.; Sanchis, P. Toward Nonvolatile Switching in Silicon Photonic Devices. Proc. Laser Photonics Rev. 2021, 15, 2000501. [Google Scholar] [CrossRef]
- Kinoshita, K.; Tamura, T.; Aoki, M.; Sugiyama, Y.; Tanaka, H. Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide. Proc. Appl. Phys. Lett. 2006, 89, 103509. [Google Scholar] [CrossRef]
- Kim, K.M.; Jeong, D.S.; Hwang, C.S. Nanofilamentary resistive switching in binary oxide system: A review on the present status and outlook. Proc. Nanotechnol. 2011, 22, 254002. [Google Scholar] [CrossRef]
- Del Valle, J.; Ramirez, J.G.; Rozenberg, M.J.; Schuller, I.K. Challenges in materials and devices for resistive-switching-based neuromorphic computing. Proc. J. Appl. Phys. 2018, 124, 211101. [Google Scholar] [CrossRef]
15 µm | 10 µm | 5 µm | |
---|---|---|---|
‘1’ (unbiased)/‘2’ (unbiased) | Yes | No | No |
‘1’ (LRS)/’2‘ (unbiased) | No | Yes | Yes |
‘1’ (HRS)/’2‘ (unbiased) | No | Yes | Yes |
‘1’ (HRS)/’2‘ (LRS) | Yes | Yes | Yes |
‘1’ (HRS)/’2‘ (HRS) | Yes | Yes | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, R.W.; Liu, B.-L.; Huang, C.-L. The Spectral Response of the Dual Microdisk Resonator Based on BaTiO3 Resistive Random Access Memory. Micromachines 2022, 13, 1175. https://doi.org/10.3390/mi13081175
Chuang RW, Liu B-L, Huang C-L. The Spectral Response of the Dual Microdisk Resonator Based on BaTiO3 Resistive Random Access Memory. Micromachines. 2022; 13(8):1175. https://doi.org/10.3390/mi13081175
Chicago/Turabian StyleChuang, Ricky Wenkuei, Bo-Liang Liu, and Cheng-Liang Huang. 2022. "The Spectral Response of the Dual Microdisk Resonator Based on BaTiO3 Resistive Random Access Memory" Micromachines 13, no. 8: 1175. https://doi.org/10.3390/mi13081175
APA StyleChuang, R. W., Liu, B. -L., & Huang, C. -L. (2022). The Spectral Response of the Dual Microdisk Resonator Based on BaTiO3 Resistive Random Access Memory. Micromachines, 13(8), 1175. https://doi.org/10.3390/mi13081175