Differences in Treating Patients with Palpitations at the Primary Healthcare Level Using Telemedical Device Savvy before and during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Sample Size
2.3. Data Tool and Collection
2.4. Data Management and Analysis
- -
- t-test of independent samples or ANOVA for normally distributed numerical variables;
- -
- Mann–Whitney U test for non-normally distributed numerical variables;
- -
- Pearson chi-squared test for descriptive variables or Fisher’s exact test as a correction for smaller samples.
2.5. Ethical Considerations
3. Results
3.1. Causes for ECG Sensor Placement
3.2. Heart Rhythm Disorder Diagnosis and Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Statement of Human and Animal Rights
References
- The ACC/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm abnormalities. Heart Rhythm. 2008, 5, 934–955. [CrossRef] [PubMed]
- Goyal, A.; Robinson, K.J.; Sanchack, K.E. Palpitations. StatPearls Publ. 2019, 6. Available online: https://www.ncbi.nlm.nih.gov/books/NBK436016/ (accessed on 1 May 2022).
- Wexler, R.K.; Pleister, A.; Raman, S.V. Palpitations: Evaluation in the Primary Care Setting. Am. Fam Physician 2017, 96, 784–789. [Google Scholar]
- Shen, W.K.; Sheldon, R.S.; Benditt, D.G. Guideline for the evaluation and management of patients with syncope: A report of the American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rythm Society. J. Am. Coll. Cardiol. 2017, 70, 620–663. [Google Scholar] [CrossRef]
- Weitz, H.H.; Weinstock, P.J. Approach to the patient with palpitations. Med. Clin. N. Am. 1995, 79, 449–456. [Google Scholar] [CrossRef]
- Khurshid, S.; Choi, S.H.; Weng, L.C.; Wang, E.Y.; Trinquart, L.; Benjamin, E.J.; Ellinor, P.T.; Lubitz, S.A. Frequency of Cardiac Rhythm Abnormalities in a Half Million Adults. Circ. Arrhythm. Electrophysiol. 2018, 11, e006273. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, T.; Wimo, A.; Elmståhl, S.; Qiu, C.; Bohman, D.M.; Sanmartin Berglund, J. Prevalence and Incidence of Atrial Fibrillation and Other Arrhythmias in the General Older Population: Findings from the Swedish National Study on Aging and Care. Gerontol. Geriatr. Med. 2019, 5, 2333721419859687. [Google Scholar] [CrossRef] [Green Version]
- Zimetbaum, P.J.; Josephson, M.E. The evolving role of ambulatory arrhythmia monitoring in general clinical practice. Ann. Intern. Med. 1999, 130, 848. [Google Scholar] [CrossRef]
- Gale, C.P.; Camm, A.J. Assessment of palpitations. BMJ 2016, 352, h5649. [Google Scholar] [CrossRef]
- Hu, M.X.; Lamers, F.; de Geus, E.J.; Penninx, B.W. Influences of lifestyle factors on cardiac autonomic nervous system activity over time. Prev. Med. 2017, 94, 12–19. [Google Scholar] [CrossRef]
- Mankad, P.; Kalahasty, G. Antiarrhythmic Drugs: Risks and Benefits. Med. Clin. N. Am. 2019, 103, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Tracy, C.M.; Masood, A.; DiMarco, J.P. ACC/AHA clinical competence statement on invasive electro-physiology studies, catheter ablation, and cardioversion. JACC 2000, 36, 1725–1736. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.C.; Olgin, J.E.; Lee, B.K. Wearable cardioverter-defibrillators: A review of evidence and indications. Trends Cardiovasc. Med. 2021, 31, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Mela, T. Pacemakers and ICDs. Cardiol. Clin. 2014, 32, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, C.; Wagner, H.; Snuckel, M.; Katz, M. Evidence-Based Approach to Palpitations. Med. Clin. N. Am. 2021, 105, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Klein-Wiele, O.; Faghih, M.; Dreesen, S.; Urbien, R.; Abdelghafor, M.; Kara, K.; Schulte-Hermes, M.; Garmer, M.; Grönemeyer, D.; Hailer, B. A novel cross-sector telemedical approach to detect arrhythmia in primary care patients with palpitations using a patient-activated event recorder. Cardiol. J. 2016, 23, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Vodička, S.; Naji, H.F.; Zelko, E. The Role of Telecardiology in Dealing with Patients with Cardiac Rhythm Disorders in Family Medicine—Systematic Review. Slov. J. Public Health 2020, 59, 108–116. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Rezayi, S.; Tanhapour, M.; Saeedi, S. Telecardiology interventions for patients with cardiovascular disease: A systematic review on characteristics and effects. Int. J. Med. Inform. 2021, 158, 104663. [Google Scholar] [CrossRef]
- Molinari, G.; Molinari, M.; Di Biase, M.; Brunetti, N.D. Telecardiology and its settings of application: An update. J. Telemed. Telecare 2018, 24, 373–381. [Google Scholar] [CrossRef]
- Lukas, H.; Xu, C.; Yu, Y.; Gao, W. Emerging Telemedicine Tools for Remote COVID-19 Diagnosis, Monitoring, and Management. ACS Nano. 2020, 14, 16180–16193. [Google Scholar] [CrossRef]
- Sokolowska, M.; Lukasik, Z.M.; Agache, I.; Akdis, C.A.; Akdis, D.; Akdis, M.; Barcik, W.; Brough, H.A.; Eiwegger, T.; Eljaszewicz, A.; et al. Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and perspectives-A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020, 75, 2445–2476. [Google Scholar] [CrossRef] [PubMed]
- Shamsoddin, E. A COVID-19 pandemic guideline in evidence-based medicine. Evid. Based Dent. 2020, 21, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.K.; Kowey, P.R.; Prystowsky, E.N.; Benditt, D.G.; Cannom, D.S.; Pratt, C.M. First experience with a mobile cardiac outpatient telemetry system for the diagnosis and management of cardiac arrhythmia. Am. J. Cardiol. 2005, 95, 878–881. [Google Scholar] [CrossRef]
- Gou, Y.; Lane, D.A.; Wang, L.; Chen, Y. Lip GYH. Mobile health (mHealth) technology for improved screening, patient involvement and optimising integrated care in atrial fibrillation: The mAFA (mAF-App) II randomised trial. Int. J. Clin. Pract. 2019, 73, e13352. [Google Scholar] [CrossRef]
- Bagnato, G.; Imbalzano, E.; Aragona, C.O.; Ioppolo, C.; Di Micco, P.; La Rosa, D.; Costa, F.; Micari, A.; Tomeo, S.; Zirilli, N.; et al. New-Onset Atrial Fibrillation and Early Mortality Rate in COVID-19 Patients: Association with IL-6 Serum Levels and Respiratory Distress. Medicina 2022, 58, 530. [Google Scholar] [CrossRef]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef]
- Desai, A.D.; Boursiquot, B.C.; Melki, L.; Wan, E.Y. Management of Arrhythmias Associated with COVID-19. Curr. Cardiol. Rep. 2020, 23, 2. [Google Scholar] [CrossRef]
- Harding, I.; Khan, P.; Alves, K.; Weerasinghe, N.; Daily, T.; Arumugam, P.; Kamdar, R.; Sohal, M.; Murgatroyd, F.; Scott, P.A. Remote Monitoring of Arrhythmias in the COVID Lockdown Era: A Multicentre Experience. Circ. Arrhythm. Electrophysiol. 2021, 14, e008932. [Google Scholar] [CrossRef]
- Vodička, S.; Susič, A.P.; Zelko, E. Implementation of a Savvy Mobile ECG Sensor for Heart Rhythm Disorder Screening at the Primary Healthcare Level: An Observational Prospective Study. Micromachines 2021, 12, 55. [Google Scholar] [CrossRef]
- Savvy. Navodila za Uporabo Personal Cardiac Activity Monitoring. Available online: http://www.savvy.si (accessed on 1 May 2022).
- Azevedo, R.B.; Botelho, B.G.; Hollanda, J.V.G.; Ferreira, L.V.L.; Junqueira de Andrade, L.Z.; Oei, S.S.M.L.; Mello, T.S.; Muxfeldt, E.S. COVID-19 and the cardiovascular system: A comprehensive review. J. Hum. Hypertens. 2021, 35, 4–11. [Google Scholar] [CrossRef]
- Giada, F.; Raviele, A. Clinical Approach to Patients with Palpitations. Card. Electrophysiol. Clin. 2018, 10, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.R.; Alkhouli, M. Rebellious palpitations. Eur. Heart J. 2020, 41, 2902–2903. [Google Scholar] [CrossRef] [PubMed]
- Koprivnikar, H. Vpliv epidemije COVID-19 na kajenje. In XXVIII Seminar In Memoriam dr Dušana Reje: Obvladovanje raka v času COVIDA-19 v luči preventive; Krajc, M., Ed.; Zveza Slovenskih Društev za Boj Proti Raku, Onkološki inštitu: Ljubljana, Slovenia, 2020; pp. 66–79. [Google Scholar]
- Vindegaard, N.; Benros, M.E. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav. Immun. 2020, 89, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.W.; Nakamura, Y. Lifestyle factors in the prevention of COVID-19. Glob. Heal. J. 2020, 4, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.; McAlister, F.A. Implications of the COVID-19 pandemic for cardiovascular disease and risk factor management. Can. J. Cardiol. 2021, 37, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Haeck, G.; Ancion, A.; Marechal, P.; Oury, C.; Lancellotti, P. COVID-19 et maladies cardiovasculaires [COVID-19 andcardiovascular diseases]. Rev. Med. Liege 2020, 75, 226–232. [Google Scholar]
- Moreno, S.C.; Arango, C.; Moreno, C.; Wykes, T.; Galderisi, S.; Nordentoft, M. Position Paper How mental health care should change as a consequence of the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 813–824. [Google Scholar] [CrossRef]
- Babapoor-Farrokhran, S.; Alzubi, J.; Khraisha, O.; Mainigi, S.K. Editorial commentary: Cardiac arrhythmias in the era of COVID-19 pandemic. Trends Cardiovasc. Med. 2020, 30, 461–462. [Google Scholar] [CrossRef]
- Kochi, A.N.; Tagliari, A.P.; Forleo, G.B.; Fassini, G.M.; Tondo, C. Cardiac and arrhythmic complications in patients with COVID-19. J. Cardiovasc. Electrophysiol. 2020, 31, 1003–1008. [Google Scholar] [CrossRef] [Green Version]
- Rav-Acha, M.; Orlev, A.; Itzhaki, I.; Zimmerman, S.F.; Fteiha, B.; Bohm, D.; Kurd, R.; Samuel, T.Y.; Asher, E.; Helviz, Y.; et al. Cardiac arrhythmias amongst hospitalised Coronavirus 2019 (COVID-19) patients: Prevalence, characterisation, and clinical algorithm to classify arrhythmic risk. Int. J. Clin. Pract. 2021, 75, e13788. [Google Scholar] [CrossRef]
- Dherange, P.; Lang, J.; Qian, P.; Oberfeld, B.; Sauer, W.H.; Koplan, B.; Tedrow, U. Arrhythmias and COVID-19: A Review. JACC Clin. Electrophysiol. 2020, 6, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Patone, M.; Mei, X.W.; Handunnetthi, L.; Dixon, S.; Zaccardi, F.; Shankar-Hari, M.; Watkinson, P.; Khunti, K.; Harnden, A.; Coupland, C.A.C.; et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat. Med. 2022, 28, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Moey, M.; Sengodan, P.M.; Shah, N.; McCallen, J.D.; Eboh, O.; Nekkanti, R.; Carabello, B.A.; Naniwadekar, A.R. Electrocardiographic Changes and Arrhythmias in Hospitalized Patients With COVID-19. Circ. Arrhythmia Electrophysiol. 2020, 13, e009023. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, C.J.; Thomas, G.; Middeldorp, M.E.; Harper, C.; Elliott, A.D.; Ray, N.; Lau, D.H.; Campbell, K.; Sanders, P. Ventricular arrhythmia burden during the coronavirus disease 2019 (COVID-19) pandemic. Eur. Heart J. 2021, 42, 520–528. [Google Scholar] [CrossRef]
- O’Shea, C.J.; Middeldorp, M.E.; Thomas, G.; Harper, C.; Elliott, A.D.; Ray, N.; Campbell, K.; Lau, D.H.; Sanders, P. Atrial fibrillation burden during the coronavirus disease 2019 pandemic. Europace 2021, 23, 1493–1501. [Google Scholar] [CrossRef]
- Rosman, L.; Gehi, A.; Sears, S.F. How to Stay Healthy and Manage Stress If You Have a Heart Rhythm Disorder: A Guide for Patients and Their Families During the COVID-19 Outbreak. Circ. Arrhythm. Electrophysiol. 2020, 13, e009064. [Google Scholar] [CrossRef]
- Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; Der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020, 75, 2352–2371. [Google Scholar] [CrossRef]
- Ford, G.A.; Hargroves, D.; Lowe, D.; Hicks, N.; Lip, G.Y.H.; Rooney, G.; Oatley, H. Targeted atrial fibrillation detection in COVID-19 vaccination clinics. Eur. Heart J. Qual. Care Clin. Outcomes 2021, 7, 526–528. [Google Scholar] [CrossRef]
- Patone, M.; Handunnetthi, L.; Saatci, D.; Pan, J.; Katikireddi, S.V.; Razvi, S.; Hunt, D.; Mei, X.W.; Dixon, S.; Zaccardi, F.; et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat. Med. 2021, 27, 2144–2153. [Google Scholar] [CrossRef]
Time Frame | Before COVID-19 Pandemic | During COVID-19 Pandemic | During COVID-19 Pandemic after Vaccination |
---|---|---|---|
n (%) | n (%) | n (%) | |
All patients included | 50 (100) | 52 (100) | 49 (100) |
Arrhythmia present | 13 (26) | 28 (53.8) | 25 (51) |
Patients without previous COVID-19 infection | 13 (26) | 8 (15.3) | NA |
Patients with previous COVID-19 infection and unvaccinated | NA | 20 (38.5) | 16 (32.6) |
Patients without previous COVID-19 infection and vaccinated | NA | NA | 9 (18.4) |
Time Frame | Sex | Age | Smoking | Alcohol Consumption | BMI | Arterial Hypertension | Diabetes Type 2 | COVID-19 Survivor | COVID-19 Vaccinated | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Moderate | High Risk | ||||||||
n (%) | Mean ± SD | n (%) | n (%) | Mean ± SD | n (%) | n (%) | n (%) | n (%) | |||
Before COVID-19 pandemic | 14 (9.2) | 36 (23.8) | 47.86 ± 15.514 | 10 (6.6) | 48 (31.7) | 2 (1.2) | 26.07 ± 5.389 | 26 (17.2) | 23 (15.2) | NA | NA |
During COVID-19 pandemic | 15 (9.9) | 37 (24.6) | 49.13 ± 17.112 | 13 (8.6) | 51 (34.3) | 1 (0.6) | 26.3 ± 4.875 | 13 (8.8) | 25 (16.5) | 28 (18.5) | NA |
During COVID-19 pandemic after vaccination | 10 (6.6) | 39 (25.9) | 46.98 ± 18.339 | 11 (7.3) | 46 (30.4) | 3 (1.8) | 24.95 ± 5.451 | 17 (11.2) | 16 (10.5) | 27 (17.8) | 31 (20.5) |
Statistical Significance | NS a | NS b | NS a | NS a | NS c | NS a | NS a | NS a | NA |
Time Frame | Fast Heart Beats | Irregular Heart Beats | Chest Discomfort | Dizziness |
---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | |
Before COVID-19 pandemic | 36 (23.8) | 10 (6.6) | 1 (0.6) | 3 (1.8) |
During COVID-19 pandemic | 39 (25.8) | 8 (5.2) | 2 (1.2) | 3 (1.8) |
During COVID-19 pandemic after vaccination | 34 (22.5) | 10 (6.6) | 1 (0.6) | 4 (2.4) |
Statistical Significance | NS a | NS a | NS a | NS a |
Time Frame | Arrhythmia Present in All Patients | Arrhythmia Present in Patients without Previous COVID-19 Infection | Arrhythmia Present in Unvaccinated Patients with Previous COVID-19 Infection | Arrhythmia Present in Vaccinated Patients without Previous COVID-19 Infection |
---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | |
Before COVID-19 pandemic | 13 (8.6) | 13 (8.6) | NA | NA |
During COVID-19 pandemic | 28 (18.5) | 8 (5.2) | 20 (13.2) | NA |
During COVID-19 pandemic after vaccination | 25 (16.5) | NA | 16 (10.5) | 9 (5.9) |
Statistical Significance | p = 0.002 a | p = 0.004 a | p = 0.004 a | NA |
Time Frame | Supraventricular Tachycardiac Disorders Except AF | Atrial Fibrillation | Ventricular Tachycardiac Disorders | Bradycardias |
---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | |
Before COVID-19 pandemic | 10 (6.7) | 0 (0) | 2 (1.3) | 1 (0.7) |
During COVID-19 pandemic | 11 (7.2) | 7 (4.6) | 10 (6.6) | 0 (0) |
During COVID-19 pandemic after vaccination | 8 (5.2) | 7 (4.6) | 9 (6.0) | 1 (0.7) |
Statistical Significance | NS a | p = 0.004 a | p = 0.002 a | NS a |
Time Frame | Observation | Medication(s) Prescribed | Referral to Addition Test (Non-Cardiological) | Referral to Cardiologist |
---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | |
Before COVID-19 pandemic | 28 (18.5) | 13 (8.6) | 3 (2.0) | 6 (4.0) |
During COVID-19 pandemic | 28 (18.5) | 14 (9.3) | 5 (3.3) | 15 (9.9) |
During COVID-19 pandemic after vaccination | 27 (17.9) | 11 (7.3) | 5 (3.3) | 17 (11.2) |
Statistical Significance | NS a | NS a | p = 0.002 a | p < 0.001 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vodička, S.; Zelko, E. Differences in Treating Patients with Palpitations at the Primary Healthcare Level Using Telemedical Device Savvy before and during the COVID-19 Pandemic. Micromachines 2022, 13, 1176. https://doi.org/10.3390/mi13081176
Vodička S, Zelko E. Differences in Treating Patients with Palpitations at the Primary Healthcare Level Using Telemedical Device Savvy before and during the COVID-19 Pandemic. Micromachines. 2022; 13(8):1176. https://doi.org/10.3390/mi13081176
Chicago/Turabian StyleVodička, Staša, and Erika Zelko. 2022. "Differences in Treating Patients with Palpitations at the Primary Healthcare Level Using Telemedical Device Savvy before and during the COVID-19 Pandemic" Micromachines 13, no. 8: 1176. https://doi.org/10.3390/mi13081176
APA StyleVodička, S., & Zelko, E. (2022). Differences in Treating Patients with Palpitations at the Primary Healthcare Level Using Telemedical Device Savvy before and during the COVID-19 Pandemic. Micromachines, 13(8), 1176. https://doi.org/10.3390/mi13081176