Asymmetric Jetting during the Impact of Liquid Drops on Superhydrophobic Concave Surfaces
Abstract
:1. Introduction
2. Experimental Methods
3. Asymmetric Jetting Phenomenon
4. Numerical Simulations of Asymmetric Jetting
4.1. Model Validation
4.2. Simulation Parameters
4.3. Simulation Results
4.3.1. The Flow Field
4.3.2. The Pressure Distribution inside the Droplet
4.3.3. The Momentum Changes in the Droplet
5. Conclusions
- (1)
- The jetting velocity increases with the increase in the droplet impact velocity. As the eccentric distance increases, the jetting velocity first increases then decreases.
- (2)
- When the eccentric distance is small, interface bursting is induced by the high-speed evacuation of air from the dimple. With the increase in the eccentric distance, asymmetric jetting is triggered by the superposition of liquid flows in the horizontal and vertical directions. The jetting velocity and jetting angle depend on the eccentric distance.
- (3)
- The pressure inside the droplet decreases during droplet spreading. The maximum pressure first occurs at the dimple’s left edge where the droplet makes contact with the solid surface, and then moves from the left edge to the right edge of the dimple. After the spreading droplet spans over the dimple, the maximum pressure occurs at the location where the impounded air stays for interface bursting and at the location where the flow velocity is close to 0 m/s for asymmetric jetting.
- (4)
- When the droplet impacts the flat surface, the net horizontal momentum is zero because of the symmetric distribution of fluid flows, whereas the dimple will break down the symmetry of the horizontal momentum, resulting in a non-zero net value. The maximum magnitude of the horizontal momentum appears at the moment when the liquid droplet reaches the bottom of the dimple and is smaller for interface bursting case than asymmetric jetting.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, S.; Xi, X.; Lan, Z.; Wen, R.; Ma, X. Longitudinal drift behaviors and spatial transport efficiency for spraying pesticide droplets. Int. J. Heat Mass Transf. 2021, 177, 121516. [Google Scholar] [CrossRef]
- Wu, H.; Tang, L.; Cen, C.; Lee, C.-F. Effect of droplet size on the jet breakup characteristics of n-butanol during impact on a heated surface. J. Traffic Transp. Eng. 2020, 7, 320–330. [Google Scholar] [CrossRef]
- Zou, W.; Yu, H.; Zhou, P.; Zhong, Y.; Wang, Y.; Liu, L. High-resolution additive direct writing of metal micro/nanostructures by electrohydrodynamic jet printing. Appl. Surf. Sci. 2021, 543, 148800. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, Y.; Chu, H.; Wang, L. Superhydrophobicity preventing surface contamination as a novel strategy against COVID-19. J. Colloid Interface Sci. 2021, 600, 613–619. [Google Scholar] [CrossRef]
- Chen, R.; Jiao, L.; Zhu, X.; Liao, Q.; Ye, D.; Zhang, B.; Li, W.; Lei, Y.; Li, D. Cassie-to-Wenzel transition of droplet on the superhydrophobic surface caused by light induced evaporation. Appl. Therm. Eng. 2018, 144, 945–959. [Google Scholar] [CrossRef]
- Yeong, Y.H.; Burton, J.; Loth, E.; Bayer, I.S. Drop impact and rebound dynamics on an inclined superhydrophobic surface. Langmuir 2014, 30, 12027–12038. [Google Scholar] [CrossRef]
- Tang, C.; Qin, M.; Weng, X.; Zhang, X.; Zhang, P.; Li, J.; Huang, Z. Dynamics of droplet impact on solid surface with different roughness. Int. J. Multiph. Flow 2017, 96, 56–69. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, L.; Chen, W.; Xie, H.; Fu, X. Drop Encapsulated in Bubble: A New Encapsulation Structure. Phys. Rev. Lett. 2018, 120, 054503. [Google Scholar] [CrossRef]
- Liu, Y.; Andrew, M.; Li, J.; Yeomans, J.M.; Wang, Z. Symmetry breaking in drop bouncing on curved surfaces. Nat. Commun. 2015, 6, 10034. [Google Scholar] [CrossRef]
- Zhang, R.; Hao, P.; Zhang, X.; He, F. Dynamics of high Weber number drops impacting on hydrophobic surfaces with closed micro-cells. Soft Matter. 2016, 12, 5808–5817. [Google Scholar] [CrossRef]
- Yang, C.; Cao, W.; Yang, Z. Study on dynamic behavior of water droplet impacting on super-hydrophobic surface with micro-pillar structures by VOF method. Colloids Surf. A 2021, 630, 127634. [Google Scholar] [CrossRef]
- Li, J.; Weisensee, P.B. Low Weber number droplet impact on heated hydrophobic surfaces. Exp. Therm. Fluid Sci. 2022, 130, 110503. [Google Scholar] [CrossRef]
- Moita, A.S.; Moreira, A.L.N. Drop impacts onto cold and heated rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization. Int. J. Heat Fluid Flow 2007, 28, 735–752. [Google Scholar] [CrossRef]
- Chang, S.N.; Qi, H.F.; Zhou, S.; Yang, Y.L. Experimental study on freezing characteristics of water droplets on cold surfaces. Int. J. Heat Mass Transf. 2022, 194, 123108. [Google Scholar] [CrossRef]
- Su, J.; Legchenkova, I.; Liu, C.; Lu, C.; Ma, G.; Bormashenko, E.; Liu, Y. Faceted and Circular Droplet Spreading on Hierarchical Superhydrophobic Surfaces. Langmuir 2020, 36, 534–539. [Google Scholar] [CrossRef]
- Liu, Y.; Moevius, L.; Xu, X.; Qian, T.; Yeomans, J.M.; Wang, Z. Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 2014, 10, 515–519. [Google Scholar] [CrossRef]
- Yarin, A.L. Drop impact dynamics: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Richard, D.; Clanet, C.; Quere, D. Contact time of a bouncing drop. Nature 2002, 417, 811. [Google Scholar] [CrossRef]
- Han, N.-N.; Sun, B.-M.; He, X. Split of droplets at the nanoscale using mixed-wettability surfaces: A molecular dynamics simulation. Appl. Surf. Sci. 2022, 600, 154025. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Zhu, C.; Tian, L.; Zhao, N. Numerical investigation of droplet impact on a solid superhydrophobic surface. Phys. Fluids 2021, 33, 063310. [Google Scholar] [CrossRef]
- Siddique, A.U.; Trimble, M.; Zhao, F.; Weislogel, M.M.; Tan, H. Jet ejection following drop impact on micropillared hydrophilic substrates. Phys. Rev. Fluids 2020, 5, 063606. [Google Scholar] [CrossRef]
- Asai, B.; Tan, H.; Siddique, A.U. Droplet Impact on a Micro-structured Hydrophilic Surface: Maximum Spreading, Jetting, and Partial Rebound. Int. J. Multiph. Flow 2022, 157, 104235. [Google Scholar] [CrossRef]
- Bartolo, D.; Josserand, C.; Bonn, D. Singular jets and bubbles in drop impact. Phys. Rev. Lett. 2006, 96, 124501. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.W.; Zou, S.; Lin, S.J.; Zhao, B.Y.; Deng, X.; Chen, L.Q. Oblique droplet impact on superhydrophobic surfaces: Jets and bubbles. Phys. Fluids 2020, 32, 122112. [Google Scholar] [CrossRef]
- Tsai, P.C.; Pacheco, S.; Pirat, C.; Lefferts, L.; Lohse, D. Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces. Langmuir 2009, 25, 12293–12298. [Google Scholar] [CrossRef]
- Thoroddsen, S.T.; Takehara, K.; Nguyen, H.D.; Etoh, T.G. Singular jets during the collapse of drop-impact craters. J. Fluid Mech. 2018, 848, R3. [Google Scholar] [CrossRef]
- Li, J.; Yang, K.; Liang, Y.; Liu, C. Hydrodynamic analysis of the energy dissipation of droplets on vibrating superhydrophobic surfaces. Int. Commun. Heat Mass Transf. 2022, 137, 106264. [Google Scholar] [CrossRef]
- Kibar, A. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: Energy transformation. Fluid Dyn. Res. 2015, 48, 015501. [Google Scholar] [CrossRef]
- Yamamoto, K.; Motosuke, M.; Ogata, S. Initiation of the Worthington jet on the droplet impact. Appl. Phys. Lett. 2018, 112, 093701. [Google Scholar] [CrossRef]
- Guo, C.F.; Liu, L.; Sun, J.X.; Liu, C.W.; Liu, S.Y. Splashing behavior of impacting droplets on grooved superhydrophobic surfaces. Phys. Fluids 2022, 34, 052105. [Google Scholar] [CrossRef]
- Pearson, J.T.; Bilodeau, D.; Maynes, D. Two-Pronged Jet Formation Caused by Droplet Impact on Anisotropic Superhydrophobic Surfaces. J.Fluid Eng. T ASME 2016, 138, 074501. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathy, A.; Nam, Y.; Lee, C.; Sen, P. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes. Soft Matter. 2018, 14, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Q.; Xiao, Z.Y.; Chan, P.C.H.; Lee, Y.K.; Li, Z.G. A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Appl. Surf. Sci. 2011, 257, 8857–8863. [Google Scholar] [CrossRef]
- Liu, C.; Legchenkova, I.; Han, L.; Ge, W.; Lv, C.; Feng, S.; Bormashenko, E.; Liu, Y. Directional Droplet Transport Mediated by Circular Groove Arrays. Part II: Theory of Effect. Langmuir 2021, 37, 1948–1953. [Google Scholar] [CrossRef]
- Liu, C.; Legchenkova, I.; Han, L.; Ge, W.; Lv, C.; Feng, S.; Bormashenko, E.; Liu, Y. Directional Droplet Transport Mediated by Circular Groove Arrays. Part I: Experimental Findings. Langmuir 2020, 36, 9608–9615. [Google Scholar] [CrossRef]
- Josserand, C.; Thoroddsen, S.T. Drop Impact on a Solid Surface. Annu. Rev. Fluid Mech. 2016, 48, 365–391. [Google Scholar] [CrossRef]
- Wu, G.; Chen, S. Simulating the collision of a moving droplet against a moving particle: Impact of Bond number, wettability, size ratio, and eccentricity. Phys. Fluids 2021, 33, 093313. [Google Scholar] [CrossRef]
- Zhu, P.; Chen, C.; Nandakumar, K.; Wang, L. Nonspecular Reflection of Droplets. Small 2021, 17, 2006695. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Zhong, H.; Liu, Z.; Wang, J.; Wang, J.; Liu, G.; Li, Y.; Zhu, P. Asymmetric Jetting during the Impact of Liquid Drops on Superhydrophobic Concave Surfaces. Micromachines 2022, 13, 1521. https://doi.org/10.3390/mi13091521
Chen C, Zhong H, Liu Z, Wang J, Wang J, Liu G, Li Y, Zhu P. Asymmetric Jetting during the Impact of Liquid Drops on Superhydrophobic Concave Surfaces. Micromachines. 2022; 13(9):1521. https://doi.org/10.3390/mi13091521
Chicago/Turabian StyleChen, Chengmin, Hongjun Zhong, Zhe Liu, Jianchun Wang, Jianmei Wang, Guangxia Liu, Yan Li, and Pingan Zhu. 2022. "Asymmetric Jetting during the Impact of Liquid Drops on Superhydrophobic Concave Surfaces" Micromachines 13, no. 9: 1521. https://doi.org/10.3390/mi13091521
APA StyleChen, C., Zhong, H., Liu, Z., Wang, J., Wang, J., Liu, G., Li, Y., & Zhu, P. (2022). Asymmetric Jetting during the Impact of Liquid Drops on Superhydrophobic Concave Surfaces. Micromachines, 13(9), 1521. https://doi.org/10.3390/mi13091521