Applications of Smart Material Sensors and Soft Electronics in Healthcare Wearables for Better User Compliance
Abstract
:1. Introduction
- Self-reporting by patients in the form of follow-up visits, questionnaires, or disease reports;
- Pill count is a common method of estimating compliance by comparing the number of pills consumed to the number of pills dispensed;
- Preventative measures such as monitoring vital signs such as blood pressure and glucose levels.
- Transiency: they are sensitive to their environments and capable of existing in a number of states;
- Immediacy: swiftly reacting to environmental influences;
- Self-actuation (intelligence): this ability is contained within the matter;
- Selectivity: the reaction is distinct and predictable;
- Directness: co-occurrence of action and reaction.
2. Healthcare Wearables
3. Smart Materials and Soft Electronics in Wearables Healthcare Devices
3.1. Temperature Sensors
3.2. Strain Sensors
3.3. Detection of Sweat Metabolites
3.4. Detection of Volatile Biomarkers
3.5. Wound Health Assessment
3.6. Orthopedic and Surgical Site Assessment
4. Scope for Improvement in Ergonomics and User Compliance
5. Recent Advances in Soft Electronics-Based Healthcare Monitoring
6. Nanotechnology for Smart Materials and Soft Electronics
7. Challenges and Future Perspectives of Smart Materials for Wearable Healthcare Devices
8. Challenges in Wearable Healthcare Devices: The User Perspective
9. Future Scope
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Steiner, J.F.; Earnest, M.A. The Language of Medication-Taking. Ann. Intern. Med. 2000, 132, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Siracusano, A.; Niolu, C. Discontinuità Psicofarmacologica e Aderenza. In Il pensiero scientifico; 2005; p. 157. ISBN 9788849001068. Available online: https://art.torvergata.it/handle/2108/163789 (accessed on 15 November 2022).
- Dilla, T.; Valladares, A.; Lizán, L.; Sacristán, J.A. Adherencia y Persistencia Terapéutica: Causas, Consecuencias y Estrategias de Mejora. Aten Primaria 2009, 41, 342. [Google Scholar] [CrossRef] [Green Version]
- Alfonso, L.M. Acerca Del Concepto de Adherencia Terapéutica. Rev. Cub. Salud Publica 2004, 30, 1–5. [Google Scholar]
- Izzah, Z.; Zijp, T.R.; Åberg, C.; Touw, D.J.; van Boven, J.F. Electronic Smart Blister Packages to Monitor and Support Medication Adherence: A Usability Study. Patient Prefer Adherence 2022, 16, 2543–2558. [Google Scholar] [CrossRef]
- Morak, J.; Schwarz, M.; Hayn, D.; Schreier, G. Feasibility of mHealth and Near Field Communication Technology Based Medication Adherence Monitoring. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: Manhattan, NY, USA, 2012; pp. 272–275. [Google Scholar] [CrossRef]
- Liu, Y.; He, K.; Chen, G.; Leow, W.R.; Chen, X. Nature-Inspired Structural Materials for Flexible Electronic Devices. Chem. Rev. 2017, 117, 12893–12941. [Google Scholar] [CrossRef]
- Wacker, M.G.; Proykova, A.; Santos, G.M.L. Dealing with Nanosafety around the Globe-Regulation vs. Innovation. Int. J. Pharm. 2016, 509, 95–106. [Google Scholar] [CrossRef]
- Kenry; Yeo, J.C.; Lim, C.T. Emerging Flexible and Wearable Physical Sensing Platforms for Healthcare and Biomedical Applications. Microsyst. Nanoeng. 2016, 2, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Gao, B. Development of Smart Wearable Sensors for Life Healthcare. Eng. Regen. 2021, 2, 163–170. [Google Scholar] [CrossRef]
- Arab Hassani, F.; Shi, Q.; Wen, F.; He, T.; Haroun, A.; Yang, Y.; Feng, Y.; Lee, C. Smart Materials for Smart Healthcare– Moving from Sensors and Actuators to Self-Sustained Nanoenergy Nanosystems. Smart Mater. Med. 2020, 1, 92–124. [Google Scholar] [CrossRef]
- Poon, A.S.Y. Miniaturized Biomedical Implantable Devices. Implant. Bioelectron. 2014, 9783527335, 45–64. [Google Scholar] [CrossRef]
- Someya, T.; Amagai, M. Toward a New Generation of Smart Skins. Nat. Biotechnol. 2019, 37, 382–388. [Google Scholar] [CrossRef]
- Hassani, F.A.; Gammad, G.G.L.; Mogan, R.P.; Ng, T.K.; Kuo, T.L.C.; Ng, L.G.; Luu, P.; Thakor, N.V.; Yen, S.C.; Lee, C. Design and Anchorage Dependence of Shape Memory Alloy Actuators on Enhanced Voiding of a Bladder. Adv. Mater. Technol. 2018, 3, 1700184. [Google Scholar] [CrossRef]
- Hassani, F.A.; Peh, W.Y.X.; Gammad, G.G.L.; Mogan, R.P.; Ng, T.K.; Kuo, T.L.C.; Ng, L.G.; Luu, P.; Yen, S.C.; Lee, C. A 3D Printed Implantable Device for Voiding the Bladder Using Shape Memory Alloy (SMA) Actuators. Adv. Sci. 2017, 4, 1700143. [Google Scholar] [CrossRef] [PubMed]
- Scholten, K.; Meng, E. Materials for Microfabricated Implantable Devices: A Review. Lab Chip 2015, 15, 4256–4272. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in Healthcare Wearable Devices. NPJ Flex. Electron. 2021, 5, 1–14. [Google Scholar] [CrossRef]
- Brönneke, J.B.; Müller, J.; Mouratis, K.; Hagen, J.; Stern, A.D. Regulatory, Legal, and Market Aspects of Smart Wearables for Cardiac Monitoring. Sensors 2021, 21, 4937. [Google Scholar] [CrossRef]
- Stefana, E.; Marciano, F.; Rossi, D.; Cocca, P.; Tomasoni, G. Wearable Devices for Ergonomics: A Systematic Literature Review. Sensors 2021, 21, 777. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, X.; Fang, X.; Kong, J. Wearable Chem-Biosensing Devices: From Basic Research to Commercial Market. Lab Chip 2021, 21, 4285–4310. [Google Scholar] [CrossRef]
- Haghi, M.; Thurow, K.; Stoll, R. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices. Healthc. Inform. Res. 2017, 23, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Bunn, J.A.; Navalta, J.W.; Fountaine, C.J.; Reece, J.D. Current State of Commercial Wearable Technology in Physical Activity Monitoring 2015–2017. Int. J. Exerc. Sci. 2018, 11, 503. [Google Scholar]
- Rentz, L.E.; Ulman, H.K.; Galster, S.M. Deconstructing Commercial Wearable Technology: Contributions toward Accurate and Free-Living Monitoring of Sleep. Sensors 2021, 21, 5071. [Google Scholar] [CrossRef] [PubMed]
- Martinez, G.J.; Mattingly, S.M.; Robles-Granda, P.; Saha, K.; Sirigiri, A.; Young, J.; Chawla, N.; de Choudhury, M.; D’Mello, S.; Mark, G.; et al. Predicting Participant Compliance with Fitness Tracker Wearing and Ecological Momentary Assessment Protocols in Information Workers: Observational Study. JMIR mHealth uHealth 2021, 9, e22218. [Google Scholar] [CrossRef]
- Kouis, P.; Michanikou, A.; Anagnostopoulou, P.; Galanakis, E.; Michaelidou, E.; Dimitriou, H.; Matthaiou, A.M.; Kinni, P.; Achilleos, S.; Zacharatos, H.; et al. Use of Wearable Sensors to Assess Compliance of Asthmatic Children in Response to Lockdown Measures for the COVID-19 Epidemic. Sci. Rep. 2021, 11, 5895. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.; Runge, R.; Snyder, M. Wearables and the Medical Revolution. Per. Med. 2018, 15, 429–448. [Google Scholar] [CrossRef] [Green Version]
- Pandian, P.S.; Mohanavelu, K.; Safeer, K.P.; Kotresh, T.M.; Shakunthala, D.T.; Gopal, P.; Padaki, V.C. Smart Vest: Wearable Multi-Parameter Remote Physiological Monitoring System. Med. Eng. Phys. 2008, 30, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Rostaminia, S.; Homayounfar, S.Z.; Kiaghadi, A.; Andrew, T.; Ganesan, D. PhyMask: Robust Sensing of Brain Activity and Physiological Signals During Sleep with an All-Textile Eye Mask. ACM Trans. Comput. Healthc. 2022, 3, 1–35. [Google Scholar] [CrossRef]
- Dang, B.; Dicarlo, J.; Lukashov, S.; Hinds, N.; Reinen, J.; Wen, B.; Hao, T.; Bilal, E.; Rogers, J. Development of a Smart Sleep Mask with Multiple Sensors. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; IEEE: Manhattan, NY, USA, 2021; pp. 7058–7062. [Google Scholar]
- Liao, L.-D.; Wang, Y.; Tsao, Y.-C.; Wang, I.-J.; Jhang, D.-F.; Chuang, C.-C.; Chen, S.-F. Design and Implementation of a Multifunction Wearable Device to Monitor Sleep Physiological Signals. Micromachines 2020, 11, 672. [Google Scholar] [CrossRef]
- Mehrabadi, M.A.; Azimi, I.; Sarhaddi, F.; Axelin, A.; Niela-Vilén, H.; Myllyntausta, S.; Stenholm, S.; Dutt, N.; Liljeberg, P.; Rahmani, A.M. Sleep Tracking of a Commercially Available Smart Ring and Smartwatch against Medical-Grade Actigraphy in Everyday Settings: Instrument Validation Study. JMIR mHealth uHealth 2020, 8, e20465. [Google Scholar] [CrossRef]
- Grandner, M.A.; Bromberg, Z.; Hadley, A.; Morrell, Z.; Graf, A.; Hutchison, S.; Freckleton, D. Performance of a Multisensor Smart Ring to Evaluate Sleep: In-Lab and Home-Based Evaluation of Generalized and Personalized Algorithms. Sleep 2022, zsac152. [Google Scholar] [CrossRef]
- Wang, Q.; Ruan, T.; Xu, Q.; Yang, B.; Liu, J. Wearable Multifunctional Piezoelectric MEMS Device for Motion Monitoring, Health Warning, and Earphone. Nano Energy 2021, 89, 106324. [Google Scholar] [CrossRef]
- Poh, M.-Z.; Kim, K.; Goessling, A.; Swenson, N.; Picard, R. Cardiovascular Monitoring Using Earphones and a Mobile Device. IEEE Pervasive Comput. 2012, 11, 18–26. [Google Scholar] [CrossRef]
- Lin, W.-Y.; Verma, V.; Lee, M.-Y.; Lai, C.-S. Activity Monitoring with a Wrist-Worn, Accelerometer-Based Device. Micromachines 2018, 9, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löfhede, J.; Seoane, F.; Thordstein, M. Textile Electrodes for EEG Recording—A Pilot Study. Sensors 2012, 12, 16907–16919. [Google Scholar] [CrossRef]
- Coosemans, J.; Hermans, B.; Puers, R. Integrating Wireless ECG Monitoring in Textiles. Sens. Actuators A Phys. 2006, 130–131, 48–53. [Google Scholar] [CrossRef]
- Chiarugi, F.; Karatzanis, I.; Zacharioudakis, G.; Meriggi, P.; Rizzo, F.; Stratakis, M.; Louloudakis, S.; Biniaris, C.; Valentini, M.; Di Rienzo, M.; et al. Measurement of Heart Rate and Respiratory Rate Using a Textile-Based Wearable Device in Heart Failure Patients. In Proceedings of the 2008 Computers in Cardiology, Bologna, Italy, 14–17 September 2008; IEEE: Manhattan, NY, USA, 2008; pp. 901–904. [Google Scholar] [CrossRef]
- Coyle, S.; Morris, D.; Lau, K.T.; Diamond, D.; Taccini, N.; Costanzo, D.; Salvo, P.; Di Francesco, F.; Trivella, M.G.; Porchet, J.A.; et al. Textile Sensors to Measure Sweat PH and Sweat-Rate during Exercise. In Proceedings of the 2009 3rd International Conference on Pervasive Computing Technologies for Healthcare—Pervasive Health 2009, PCTHealth 2009, London, UK, 1–3 April 2009. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Norton, J.J.S.; Qazi, R.; Zou, Z.; Ammann, K.R.; Liu, H.; Yan, L.; Tran, P.L.; Jang, K.-I.; Lee, J.W.; et al. Epidermal Mechano-Acoustic Sensing Electronics for Cardiovascular Diagnostics and Human-Machine Interfaces. Sci. Adv. 2016, 2, e1601185. [Google Scholar] [CrossRef] [Green Version]
- Debener, S.; Emkes, R.; De Vos, M.; Bleichner, M. Unobtrusive Ambulatory EEG Using a Smartphone and Flexible Printed Electrodes around the Ear. Sci. Rep. 2015, 5, 16743. [Google Scholar] [CrossRef] [Green Version]
- Park, D.Y.; Joe, D.J.; Kim, D.H.; Park, H.; Han, J.H.; Jeong, C.K.; Park, H.; Park, J.G.; Joung, B.; Lee, K.J. Self-Powered Real-Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors. Adv. Mater. 2017, 29, 1702308. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Zhang, X.; Daugherty, R.; Lee, E.; Kunnen, G.; Allee, D.R.; Forsythe, E.; Chae, J. Design and Implementation of Electrostatic Micro-Actuators in Ultrasonic Frequency on a Flexible Substrate, PEN (Polyethylene Naphthalate). Sens. Actuators A Phys. 2013, 195, 198–205. [Google Scholar] [CrossRef]
- Liu, G.; Tan, Q.; Kou, H.; Zhang, L.; Wang, J.; Lv, W.; Dong, H.; Xiong, J. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things. Sensors 2018, 18, 1400. [Google Scholar] [CrossRef]
- Nag, A.; Simorangkir, R.B.V.B.; Gawade, D.R.; Nuthalapati, S.; Buckley, J.L.; O’Flynn, B.; Altinsoy, M.E.; Mukhopadhyay, S.C. Graphene-Based Wearable Temperature Sensors: A Review. Mater. Des. 2022, 221, 110971. [Google Scholar] [CrossRef]
- Wu, Z.; Ding, Q.; Li, Z.; Zhou, Z.; Luo, L.; Tao, K.; Xie, X.; Wu, J. Ultrasensitive, Stretchable, and Transparent Humidity Sensor Based on Ion-Conductive Double-Network Hydrogel Thin Films. Sci. China Mater. 2022, 65, 2540–2552. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mukaida, M.; Kirihara, K.; Lyu, L.; Wei, Q. Poly(3,4-Ethylene Dioxythiophene)/Poly(Styrene Sulfonate) Electrodes in Electrochemical Cells for Harvesting Waste Heat. Energy Technol. 2020, 8, 2070053. [Google Scholar] [CrossRef]
- Amjadi, M.; Kyung, K.U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Lee, H.; Seong, B.; Moon, H.; Byun, D. Directly Printed Stretchable Strain Sensor Based on Ring and Diamond Shaped Silver Nanowire Electrodes. RSC Adv. 2015, 5, 28379–28384. [Google Scholar] [CrossRef]
- Kang, D.; Pikhitsa, P.V.; Choi, Y.W.; Lee, C.; Shin, S.S.; Piao, L.; Park, B.; Suh, K.Y.; Kim, T.I.; Choi, M. Ultrasensitive Mechanical Crack-Based Sensor Inspired by the Spider Sensory System. Nature 2014, 516, 222–226. [Google Scholar] [CrossRef]
- Park, J.J.; Hyun, W.J.; Mun, S.C.; Park, Y.T.; Park, O.O. Highly Stretchable and Wearable Graphene Strain Sensors with Controllable Sensitivity for Human Motion Monitoring. ACS Appl. Mater. Interfaces 2015, 7, 6317–6324. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Lu, C.; Yang, S.; Rogers, J. Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers. Adv. Funct. Mater 2012, 22, 4044–4050. [Google Scholar] [CrossRef]
- Gong, S.; Lai, D.T.H.; Wang, Y.; Yap, L.W.; Si, K.J.; Shi, Q.; Jason, N.N.; Sridhar, T.; Uddin, H.; Cheng, W. Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors. ACS Appl. Mater. Interfaces 2015, 7, 19700–19708. [Google Scholar] [CrossRef]
- Seyedin, S.; Uzun, S.; Levitt, A.; Anasori, B.; Dion, G.; Gogotsi, Y.; Razal, J.M. MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Adv. Funct. Mater. 2020, 30, 1910504. [Google Scholar] [CrossRef]
- Uzun, S.; Seyedin, S.; Stoltzfus, A.L.; Levitt, A.S.; Alhabeb, M.; Anayee, M.; Strobel, C.J.; Razal, J.M.; Dion, G.; Gogotsi, Y. Knittable and Washable Multifunctional MXene-Coated Cellulose Yarns. Adv. Funct. Mater. 2019, 29, 1905015. [Google Scholar] [CrossRef]
- Shintake, J.; Piskarev, Y.; Jeong, S.H.; Floreano, D. Ultrastretchable Strain Sensors Using Carbon Black-Filled Elastomer Composites and Comparison of Capacitive versus Resistive Sensors. Adv. Mater. Technol. 2018, 3, 1700284. [Google Scholar] [CrossRef] [Green Version]
- Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable Sweat Sensors. Nat. Electron. 2018, 1, 160–171. [Google Scholar] [CrossRef]
- Hartel, M.C.; Lee, D.; Weiss, P.S.; Wang, J.; Kim, J. Resettable Sweat-Powered Wearable Electrochromic Biosensor. Biosens. Bioelectron. 2022, 215, 114565. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A.; Haick, H. Hybrid Volatolomics and Disease Detection. Angew. Chem. Int. Ed. 2015, 54, 11036–11048. [Google Scholar] [CrossRef] [PubMed]
- Jalal, A.H.; Alam, F.; Roychoudhury, S.; Umasankar, Y.; Pala, N.; Bhansali, S. Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sens. 2018, 3, 1246–1263. [Google Scholar] [CrossRef] [PubMed]
- Güntner, A.T.; Koren, V.; Chikkadi, K.; Righettoni, M.; Pratsinis, S.E. E-Nose Sensing of Low-Ppb Formaldehyde in Gas Mixtures at High Relative Humidity for Breath Screening of Lung Cancer? ACS Sens. 2016, 1, 528–535. [Google Scholar] [CrossRef]
- Vishinkin, R.; Busool, R.; Mansour, E.; Fish, F.; Esmail, A.; Kumar, P.; Gharaa, A.; Cancilla, J.C.; Torrecilla, J.S.; Skenders, G.; et al. Profiles of Volatile Biomarkers Detect Tuberculosis from Skin. Adv. Sci. 2021, 8, 2100235. [Google Scholar] [CrossRef]
- Qin, M.; Guo, H.; Dai, Z.; Yan, X.; Ning, X. Advances in Flexible and Wearable PH Sensors for Wound Healing Monitoring. J. Semicond. 2019, 40, 111607. [Google Scholar] [CrossRef]
- Pan, N.; Qin, J.; Feng, P.; Li, Z.; Song, B. Color-Changing Smart Fibrous Materials for Naked Eye Real-Time Monitoring of Wound PH. J. Mater. Chem. B 2019, 7, 2626–2633. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Nagao, M.; Elias, A.L.; Narain, R.; Chung, H.-J. A PH-Indicating Colorimetric Tough Hydrogel Patch towards Applications in a Substrate for Smart Wound Dressings. Polymers 2017, 9, 558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinovart, T.; Valdés-Ramírez, G.; Windmiller, J.R.; Andrade, F.J.; Wang, J. Bandage-based Wearable Potentiometric Sensor for Monitoring Wound PH. Electroanalysis 2014, 26, 1345–1353. [Google Scholar] [CrossRef]
- Dong, R.; Guo, B. Smart Wound Dressings for Wound Healing. Nano Today 2021, 41, 101290. [Google Scholar] [CrossRef]
- Hogaboam, L.; Daim, T. Technology Adoption Potential of Medical Devices: The Case of Wearable Sensor Products for Pervasive Care in Neurosurgery and Orthopedics. Health Policy Technol. 2018, 7, 409–419. [Google Scholar] [CrossRef]
- Braun, B.J.; Grimm, B.; Hanflik, A.M.; Richter, P.H.; Sivananthan, S.; Yarboro, S.R.; Marmor, M.T. Wearable Technology in Orthopedic Trauma Surgery—An AO Trauma Survey and Review of Current and Future Applications. Injury 2022, 53, 1961–1965. [Google Scholar] [CrossRef]
- Lee, H.-B.; Meeseepong, M.; Trung, T.Q.; Kim, B.-Y.; Lee, N.-E. A Wearable Lab-on-a-Patch Platform with Stretchable Nanostructured Biosensor for Non-Invasive Immunodetection of Biomarker in Sweat. Biosens. Bioelectron. 2020, 156, 112133. [Google Scholar] [CrossRef]
- Fan, L.; He, Z.; Peng, X.; Xie, J.; Su, F.; Wei, D.-X.; Zheng, Y.; Yao, D. Injectable, Intrinsically Antibacterial Conductive Hydrogels with Self-Healing and PH Stimulus Responsiveness for Epidermal Sensors and Wound Healing. ACS Appl. Mater. Interfaces 2021, 13, 53541–53552. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xiang, J.X.; Lu, Y.F.; Zhang, M.K.; Li, J.J.; Gao, B.B.; Zhao, Y.J.; Gu, Z.Z. Multifunctional Wearable Sensing Devices Based on Functionalized Graphene Films for Simultaneous Monitoring of Physiological Signals and Volatile Organic Compound Biomarkers. ACS Appl. Mater. Interfaces 2018, 10, 11785–11793. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Peng, Y.; Lin, L. A Multimodal Self-Healing Flexible Sweat Sensor for Healthcare Monitoring. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Gainesville, FL, USA, 25–29 January 2021; IEEE: Manhattan, NY, USA, 2021; pp. 517–520. [Google Scholar] [CrossRef]
- Madhavan, R. Epidermis-Like High Performance Wearable Strain Sensor for Full-Range Monitoring of the Human Activities. Macromol. Mater. Eng. 2022, 307, 2200034. [Google Scholar] [CrossRef]
- Wang, C.; Qu, X.; Zheng, Q.; Liu, Y.; Tan, P.; Shi, B.; Ouyang, H.; Chao, S.; Zou, Y.; Zhao, C.; et al. Stretchable, Self-Healing, and Skin-Mounted Active Sensor for Multipoint Muscle Function Assessment. ACS Nano 2021, 15, 10130–10140. [Google Scholar] [CrossRef]
- Ge, J.; Wang, X.; Drack, M.; Volkov, O.; Liang, M.; Cañón Bermúdez, G.S.; Illing, R.; Wang, C.; Zhou, S.; Fassbender, J.; et al. A Bimodal Soft Electronic Skin for Tactile and Touchless Interaction in Real Time. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, X.; Zhang, X. Ultrarobust, Tough and Highly Stretchable Self-Healing Materials Based on Cartilage-Inspired Noncovalent Assembly Nanostructure. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Ying, W.B.; Yu, Z.; Kim, D.H.; Lee, K.J.; Hu, H.; Liu, Y.; Kong, Z.; Wang, K.; Shang, J.; Zhang, R.; et al. Waterproof, Highly Tough, and Fast Self-Healing Polyurethane for Durable Electronic Skin. ACS Appl. Mater. Interfaces 2020, 12, 11072–11083. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, W.; Yu, D. Flexible Textile-Based Self-Driven Sensor Used for Human Motion Monitoring. Energy Technol. 2020, 8, 2000164. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, C.; Lin, X.; Han, X.; Zhao, X.; Hong, J. Polyaniline-Coated Cotton Knitted Fabric for Body Motion Monitoring. Sens. Actuators A Phys. 2021, 321, 112591. [Google Scholar] [CrossRef]
- Sahafnejad-Mohammadi, I.; Karamimoghadam, M.; Zolfagharian, A.; Akrami, M.; Bodaghi, M. 4D Printing Technology in Medical Engineering: A Narrative Review. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 1–26. [Google Scholar] [CrossRef]
- Deroco, P.B.; Junior, D.W.; Kubota, L.T. Paper-Based Wearable Electrochemical Sensors: A New Generation of Analytical Devices. Electroanalysis 2022. [Google Scholar] [CrossRef]
- Singh, K.R.B.; Nayak, V.; Singh, J.; Singh, R.P. Nano-Enabled Wearable Sensors for the Internet of Things (IoT). Mater. Lett. 2021, 304, 130614. [Google Scholar] [CrossRef]
- Sabry, F.; Eltaras, T.; Labda, W.; Alzoubi, K.; Malluhi, Q. Machine Learning for Healthcare Wearable Devices: The Big Picture. J. Healthc. Eng. 2022, 2022, 4653923. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Singh, K.R.B.; Yadav, A.K.; Nayak, V.; Singh, J.; Solanki, P.R.; Singh, R.P. Internet of Things (IoT) in Nano-Integrated Wearable Biosensor Devices for Healthcare Applications. Biosens. Bioelectron. X 2022, 11, 100153. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, L.; Gao, F.; He, S.-J.; Zhao, H.-J.; Fang, Y.; Yang, J.-M.; An, Y.; Ye, Z.-W.; Dong, Z. Integration of Artificial Intelligence, Blockchain, and Wearable Technology for Chronic Disease Management: A New Paradigm in Smart Healthcare. Curr. Med. Sci. 2021, 41, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Sun, L.; Ni, Y.; Liu, L.; Xu, W. Flexible Electronics and Healthcare Applications. Front. Nanotechnol. 2021, 3, 1. [Google Scholar] [CrossRef]
- Hwang, D.G.; Trent, K.; Bartlett, M.D. Kirigami-Inspired Structures for Smart Adhesion. ACS Appl. Mater. Interfaces 2018, 10, 6747–6754. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gomes, C.M.; McDonald, K.J.; Deravi, L.F.; Felton, S.M. A Chemo-Mechatronic Origami Device for Chemical Sensing. In Proceedings of the ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS, San Antonio, TX, USA, 10–12 September 2018. [Google Scholar] [CrossRef] [Green Version]
- Neville, R.M.; Chen, J.; Guo, X.; Zhang, F.; Wang, W.; Dobah, Y.; Scarpa, F.; Leng, J.; Peng, H.X. A Kirigami Shape Memory Polymer Honeycomb Concept for Deployment. Smart Mater. Struct. 2017, 26, 05LT03. [Google Scholar] [CrossRef]
- Tolley, M.T.; Felton, S.M.; Miyashita, S.; Aukes, D.; Rus, D.; Wood, R.J. Self-Folding Origami: Shape Memory Composites Activated by Uniform Heating. Smart Mater. Struct. 2014, 23, 94006. [Google Scholar] [CrossRef]
- Kim, T.; Lee, Y.G. Shape Transformable Bifurcated Stents. Sci. Rep. 2018, 8, 13911. [Google Scholar] [CrossRef]
- Zhao, Y.; Kim, A.; Wan, G.; Tee, B.C.K. Design and Applications of Stretchable and Self-Healable Conductors for Soft Electronics. Nano Converg. 2019, 6, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Tan, Y.J.; Li, S.; Lee, W.W.; Guo, H.; Cai, Y.; Wang, C.; Tee, B.C.K. Self-Healing Electronic Skins for Aquatic Environments. Nat. Electron. 2019, 2, 75–82. [Google Scholar] [CrossRef]
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic Healing of Polymer Composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef]
- Park, K.I.; Son, J.H.; Hwang, G.T.; Jeong, C.K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S.H.; Byun, M.; Wang, Z.L.; et al. Highly-Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates. Adv. Mater. 2014, 26, 2514–2520. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Wang, J. Non-Invasive Wearable Electrochemical Sensors: A Review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Khullar, V.; Singh, H.P.; Bala, M. IoT Based Assistive Companion for Hypersensitive Individuals (ACHI) with Autism Spectrum Disorder. Asian J. Psychiatr. 2019, 46, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Khullar, V.; Singh, H.P.; Miro, Y.; Anand, D.; Mohamed, H.G.; Gupta, D.; Kumar, N.; Goyal, N. IoT Fog-Enabled Multi-Node Centralized Ecosystem for Real Time Screening and Monitoring of Health Information. Appl. Sci. 2022, 12, 9845. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Ali, K.; Abbasi, Q.H.; Imran, M.A.; Ur-Rehman, M. Challenges, Applications, and Future of Wireless Sensors in Internet of Things: A Review. IEEE Sens. J. 2022, 22, 5482–5494. [Google Scholar] [CrossRef]
- Tehrani, F.; Teymourian, H.; Wuerstle, B.; Kavner, J.; Patel, R.; Furmidge, A.; Aghavali, R.; Hosseini-Toudeshki, H.; Brown, C.; Zhang, F.; et al. An Integrated Wearable Microneedle Array for the Continuous Monitoring of Multiple Biomarkers in Interstitial Fluid. Nat. Biomed. Eng. 2022, 6, 1214–1224. [Google Scholar] [CrossRef]
- Lee, S.H.; Thunemann, M.; Lee, K.; Cleary, D.R.; Tonsfeldt, K.J.; Oh, H.; Azzazy, F.; Tchoe, Y.; Bourhis, A.M.; Hossain, L.; et al. Scalable Thousand Channel Penetrating Microneedle Arrays on Flex for Multimodal and Large Area Coverage BrainMachine Interfaces. Adv. Funct. Mater. 2022, 32, 2112045. [Google Scholar] [CrossRef]
- He, R.; Liu, H.; Fang, T.; Niu, Y.; Zhang, H.; Han, F.; Gao, B.; Li, F.; Xu, F. A Colorimetric Dermal Tattoo Biosensor Fabricated by Microneedle Patch for Multiplexed Detection of Health-Related Biomarkers. Adv. Sci. 2021, 8, 2103030. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Lim, J.; Nolan, J.K.; Lee, H.; Lee, C.H. Wearable Glucose Monitoring and Implantable Drug Delivery Systems for Diabetes Management. Adv. Healthc. Mater. 2021, 10, 2100194. [Google Scholar] [CrossRef]
- Jamaledin, R.; Yiu, C.K.Y.; Zare, E.N.; Niu, L.N.; Vecchione, R.; Chen, G.; Gu, Z.; Tay, F.R.; Makvandi, P. Advances in Antimicrobial Microneedle Patches for Combating Infections. Adv. Mater. 2020, 32, 2002129. [Google Scholar] [CrossRef]
- García-Guzmán, J.J.; Pérez-Ràfols, C.; Cuartero, M.; Crespo, G.A. Microneedle Based Electrochemical (Bio)Sensing: Towards Decentralized and Continuous Health Status Monitoring. TrAC Trends Anal. Chem. 2021, 135, 116148. [Google Scholar] [CrossRef]
- Vasylieva, N.; Marinesco, S.; Barbier, D.; Sabac, A. Silicon/SU8 Multi-Electrode Micro-Needle for in Vivo Neurochemical Monitoring. Biosens. Bioelectron. 2015, 72, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yuk, H.; Wu, J.; Varela, C.E.; Chen, X.; Roche, E.T.; Guo, C.F.; Zhao, X. Electrical Bioadhesive Interface for Bioelectronics. Nat. Mater. 2020, 20, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Namkoong, M.; Guo, H.; Rahman, M.S.; Wang, D.; Pfeil, C.J.; Hager, S.; Tian, L. Moldable and Transferrable Conductive Nanocomposites for Epidermal Electronics. NPJ Flex. Electron. 2022, 6, 1–9. [Google Scholar] [CrossRef]
- Sun, B.; McCay, R.N.; Goswami, S.; Xu, Y.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-Permeable, Multifunctional On-Skin Electronics Based on Laser-Induced Porous Graphene and Sugar-Templated Elastomer Sponges. Adv. Mater. 2018, 30, 1804327. [Google Scholar] [CrossRef]
- Son, D.; Lee, J.; Lee, D.J.; Ghaffari, R.; Yun, S.; Kim, S.J.; Lee, J.E.; Cho, H.R.; Yoon, S.; Yang, S.; et al. Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases. ACS Nano 2015, 9, 5937–5946. [Google Scholar] [CrossRef]
- Kaefer, K.; Krüger, K.; Schlapp, F.; Uzun, H.; Celiksoy, S.; Flietel, B.; Heimann, A.; Schroeder, T.; Kempski, O.; Sönnichsen, C. Implantable Sensors Based on Gold Nanoparticles for Continuous Long-Term Concentration Monitoring in the Body. Nano Lett. 2021, 21, 3325–3330. [Google Scholar] [CrossRef]
- Barri, K.; Zhang, Q.; Swink, I.; Aucie, Y.; Holmberg, K.; Sauber, R.; Altman, D.T.; Cheng, B.C.; Wang, Z.L.; Alavi, A.H. Patient-Specific Self-Powered Metamaterial Implants for Detecting Bone Healing Progress. Adv. Funct. Mater. 2022, 32, 2203533. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Zhou, J.; Nejad, S.K.; Wong, T.H.; Huang, Y.; Li, H.; Yiu, C.K.; Park, W.; Li, J.; et al. Garment Embedded Sweat-Activated Batteries in Wearable Electronics for Continuous Sweat Monitoring. NPJ Flex. Electron. 2022, 6, 1–8. [Google Scholar] [CrossRef]
- Ouyang, H.; Liu, Z.; Li, N.; Shi, B.; Zou, Y.; Xie, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q.; et al. Symbiotic Cardiac Pacemaker. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.Y.; Ku, M.J.; Qazi, R.; Nam, H.J.; Park, J.W.; Nam, K.S.; Oh, S.; Kang, I.; Jang, J.H.; Kim, W.Y.; et al. Soft Subdermal Implant Capable of Wireless Battery Charging and Programmable Controls for Applications in Optogenetics. Nat. Commun. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- İlker Beyaz, M. Energy Harvesting from Knee Motion Using Piezoelectric Patch Transducers. Acad. Platf. J. Eng. Sci. 2019, 7, 255–260. [Google Scholar] [CrossRef] [Green Version]
- You, S.; Shi, H.; Wu, J.; Shan, L.; Guo, S.; Dong, S. A Flexible, Wave-Shaped P(VDF-TrFE)/Metglas Piezoelectric Composite for Wearable Applications. J. Appl. Phys. 2016, 120, 234103. [Google Scholar] [CrossRef]
- Jin, H.; Jin, Q.; Jian, J. Smart Materials for Wearable Healthcare Devices. In Wearable Technologies; Ortiz, J.H., Ed.; InTech: London, UK, 2018; ISBN 978-1-78984-003-2. [Google Scholar]
- Yokota, T.; Inoue, Y.; Terakawa, Y.; Reeder, J.; Kaltenbrunner, M.; Ware, T.; Yang, K.; Mabuchi, K.; Murakawa, T.; Sekino, M.; et al. Ultraflexible, Large-Area, Physiological Temperature Sensors for Multipoint Measurements. Proc. Natl. Acad. Sci. USA 2015, 112, 14533–14538. [Google Scholar] [CrossRef] [Green Version]
- Boutry, C.M.; Nguyen, A.; Lawal, Q.O.; Chortos, A.; Rondeau-Gagné, S.; Bao, Z. A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring. Adv. Mater. 2015, 27, 6954–6961. [Google Scholar] [CrossRef]
- Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. A Wearable and Highly Sensitive Pressure Sensor with Ultrathin Gold Nanowires. Nat. Commun. 2014, 5, 3132. [Google Scholar] [CrossRef] [Green Version]
- Marozas, V.; Petrenas, A.; Daukantas, S.; Lukosevicius, A. A Comparison of Conductive Textile-Based and Silver/Silver Chloride Gel Electrodes in Exercise Electrocardiogram Recordings. J. Electrocardiol. 2011, 44, 189–194. [Google Scholar] [CrossRef]
- Heo, J.S.; Hossain, M.F.; Kim, I. Challenges in Design and Fabrication of Flexible/Stretchable Carbon- and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review. Sensors 2020, 20, 3927. [Google Scholar] [CrossRef]
- Nthubu, B. An Overview of Sensors, Design and Healthcare Challenges in Smart Homes: Future Design Questions. Healthcare 2021, 9, 1329. [Google Scholar] [CrossRef]
- Qiao, Y.; Qiao, L.; Chen, Z.; Liu, B.; Gao, L.; Zhang, L. Wearable Sensor for Continuous Sweat Biomarker Monitoring. Chemosensors 2022, 10, 273. [Google Scholar] [CrossRef]
- Comini, E. Achievements and Challenges in Sensor Devices. Front. Sens. 2021, 1, 607063. [Google Scholar] [CrossRef]
- Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced Carbon for Flexible and Wearable Electronics. Adv. Mater. 2019, 31, 1801072. [Google Scholar] [CrossRef]
- Singh, S.U.; Chatterjee, S.; Lone, S.A.; Ho, H.-H.; Kaswan, K.; Peringeth, K.; Khan, A.; Chiang, Y.-W.; Lee, S.; Lin, Z.-H. Advanced Wearable Biosensors for the Detection of Body Fluids and Exhaled Breath by Graphene. Microchim. Acta 2022, 189, 236. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, A.; Gupta, V.; Arya, S. Advancements and Future Prospects of Wearable Sensing Technology for Healthcare Applications. Sens. Diagn. 2022, 1, 387–404. [Google Scholar] [CrossRef]
- Stuart, T.; Hanna, J.; Gutruf, P. Wearable Devices for Continuous Monitoring of Biosignals: Challenges and Opportunities. APL Bioeng. 2022, 6, 021502. [Google Scholar] [CrossRef] [PubMed]
- Saltelli, A.; Bammer, G.; Bruno, I.; Charters, E.; di Fiore, M.; Didier, E.; Nelson Espeland, W.; Kay, J.; lo Piano, S.; Mayo, D. Five Ways to Ensure That Models Serve Society: A Manifesto. Nature 2020, 582, 482–484. [Google Scholar] [CrossRef]
- Cai, L.; Zhu, Y. The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Sci. J. 2015, 14, 2. [Google Scholar] [CrossRef]
- Beltramo, G.; Cottenet, J.; Mariet, A.-S.; Georges, M.; Piroth, L.; Tubert-Bitter, P.; Bonniaud, P.; Quantin, C. Chronic Respiratory Diseases Are Predictors of Severe Outcome in COVID-19 Hospitalised Patients: A Nationwide Study. Eur. Respir. J. 2021, 58, 2004474. [Google Scholar] [CrossRef]
- Mishra, T.; Wang, M.; Metwally, A.A.; Bogu, G.K.; Brooks, A.W.; Bahmani, A.; Alavi, A.; Celli, A.; Higgs, E.; Dagan-Rosenfeld, O. Pre-Symptomatic Detection of COVID-19 from Smartwatch Data. Nat. Biomed. Eng. 2020, 4, 1208–1220. [Google Scholar] [CrossRef]
- Geelhood, S.J.; Horbett, T.A.; Ward, W.K.; Wood, M.D.; Quinn, M.J. Passivating Protein Coatings for Implantable Glucose Sensors: Evaluation of Protein Retention. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 81, 251–260. [Google Scholar] [CrossRef]
- Ziaie, B. Implantable Wireless Microsystems. BioMEMS Biomed. Nanotechnol. 2007, 4, 205–221. [Google Scholar] [CrossRef]
Class | Mechanism | Use |
---|---|---|
(a) Shape memory materials | Shape memory materials recover to their original shape after a significant deformation due to some stimulus/stress. | Robotics and textile/fashion industries |
(b) Piezoelectric materials | Generates a voltage when deformed or vis-à-vis | Electronics devices (transducers and sensors) Pressure sensors |
(c) Electrostrictive materials | Like piezoelectric materials, but the mechanical change is proportional to the square of the electric field. | Similar to piezoelectric materials |
(d) Magnetostrictive materials | When put in a magnetic field, or vice versa, they change and cause mechanical stress | Sensor and an actuator energy harvesting |
(e) Rheological materials | These are liquids that can instantly change from one state to another when an electric or magnetic charge is applied. | These fluids may be used in car brakes, shock absorbers, and dampers. |
(f) Thermo-responsive material | These materials change their properties in response to changes in temperature | Thermostats |
(g) Electrochromic materials | These materials change their optical properties when a voltage is applied | Cathode in LCDs and in lithium batteries |
(h) Biomimetic materials | Synthetic materials developed to replicate the properties of materials produced by living organisms | Nanozymes |
Sample Source | Physiological Parameter | Sensing Devices | Refs. |
---|---|---|---|
Daytime activities | Heart rate, blood pressure, and abnormalities | Wearable vests | [27] |
Sleep monitoring | Heart rate, body temperature, and breathing | Smart rings and sleep mask | [28,29,30,31,32] |
All activities | Heart rate, ECG, and level of oxygen in the blood | Earphones | [33,34] |
Physical activities | Respiratory rate and level of oxygen in the blood | Smartwatches and wristbands | [35] |
Blood monitoring | Thoracic impedance and various biomarkers | Arm-implants | [17] |
Movement and rest, pressure | Body temperature, heart rate, EEG, ECG, and respiration rate | Textile-based devices | [36,37,38] |
Sweat | Sweat rate measurement | Textile-based devices | [39] |
Chest, forearm, and forehead, blood pressure | ECG, EEG, EMG, and arterial pulse | Tattoo-based or E-skin | [40,41] |
The epidermis of skin in the arm | Epidermal signals and ECG signals | Piezoelectric patch | [42] |
Application | Sensing Materials | Characteristics | Ref. |
---|---|---|---|
Temperature Sensor | PEDOT:PSS |
| [47] |
Strain Sensors | Gold nanowire films doped with Polyaniline microparticles |
| [53] |
Sweat metabolites detection | 3-dimensional lab-on-chip Au-based nanostructure |
| [71] |
Wound healing | Chitosan-Tetrabenzaldehyde-Functionalized Pentaerythritol hydrogel |
| [72] |
Volatile Biomarkers detection | Porphyrin/rGO/polyimide film |
| [73] |
Device/ Intervention | Nanomaterials Used | Applications | Ref. |
---|---|---|---|
Electrical bio-adhesive interface | Graphene nanocomposite | Rapid integration with wet tissues, unimpeded bidirectional communication at the device-tissue interface | [110] |
Mouldable conductive nanocomposite | Silver nanowire networks with a stacked polymer structure | Integration with wearable epidermal electronics improves flexibility, breathability, and electromechanical stability | [111] |
Gas permeable On skin electronics | Porous graphene and silicone elastomer sponges | Accelerates perspiration evaporation, minimizes the risk of inflammation, and contributes to user comfort | [112] |
Bioresorbable electronic stent | Gold nanorod-silica nanoparticles incorporated with drug encapsulated nanoparticles | Effective flow and temperature monitoring | [113] |
Implantable sensors for long-term monitoring of body fluids | Photostable gold nanoparticle-based nano platforms | Disease progression monitoring and therapeutic efficacy via biomarker concentrations | [114] |
Self-powered metamaterial spinal fusion cage implants | Triboelectric auxetic microstructures | Condition monitoring for bone healing progress | [115] |
Lab-on-a-patch non-invasive sweat biosensor | A microfluidics-integrated 3D nanostructured gold electrode | Immuno-detection of cortisol present in sweat | [71] |
Electrical bio-adhesive interface | Graphene nanocomposite | Rapid integration with wet tissues, unimpeded bidirectional communication at the device-tissue interface | [110] |
Areas | Issues | Recommendations |
---|---|---|
Data acquisition | Data quality Sensor variance Data collection method without contextual, pre-morbidity information | Standardisation of sensors, data collection methods, and customisation as per individual user-profiles. |
Balanced estimation | Over and under estimation | Interoperability |
Health equality | Everyone cannot afford to wear and use the technology. Most of these require internet-based operations. Therefore, many people are outliers from these benefits. | Increasing accessibility to the device and the data for inclusive benefit. |
Representability | A few users compared to a large population use same wearable sensor devices. Therefore, the data cannot be representative of the entire population. | Standardisation of parts and components, method, process, manufacturing, and data analytics can bring in more parity. |
Battery issues | Long-lasting batteries, easy to recharge and replace batteries | Upgrading battery technology with features like wireless charging with size-compatible batteries in devices |
Complexity of Use | Complex hardware, software, and user interface of device can make the device less user-compatible | Elevating the user interface with minimum customization settings |
Excessive air traffic | Results in blocking airwaves and thus loss of data | Exceeded bandwidth |
Media Device Fatigue | Feels like a burden carrying several devices though they serve multiple purposes | Development of ergonomic and user-friendly device designs |
Fractured Proprietary Development | Limited use cases of developed devices | Develop device that serves multiple purposes and can be beneficial for several different types for patients |
Data Transmission | Invasion of privacy and data theft or data leak issues | Ensure the reliability and trustworthiness of data and access to contextual data. Setting compliance standards |
Potential Health Problems | Internal working mechanism of devices shouldn’t cause health problems to users e.g., radiation, etc. | Appropriate scientific research and device quality assurance reports |
Device Safety Issues | Inappropriate functioning in wearables | Ensure the device safety abiding safety regulations provided by the standardised organizations |
Mobile Apps | Use of only mobile apps can limit the data accuracy and sensitivity | Mobile apps complementing user experience and overall working wearables can be preferred |
User Distrust | User data privacy issue | Good company data management |
Slow Vendor Progress | Either outdated or superfluous modalities could slower the vendor progress | Up-to-date device models according to the user requirements |
Negative User Experience | Can lead to bad marketing of the products | Balanced set of features |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, A.; Nag, S.; Gomes, A.; Gosavi, A.; Ghule, G.; Kundu, A.; Purohit, B.; Srivastava, R. Applications of Smart Material Sensors and Soft Electronics in Healthcare Wearables for Better User Compliance. Micromachines 2023, 14, 121. https://doi.org/10.3390/mi14010121
Ghosh A, Nag S, Gomes A, Gosavi A, Ghule G, Kundu A, Purohit B, Srivastava R. Applications of Smart Material Sensors and Soft Electronics in Healthcare Wearables for Better User Compliance. Micromachines. 2023; 14(1):121. https://doi.org/10.3390/mi14010121
Chicago/Turabian StyleGhosh, Arnab, Sagnik Nag, Alyssa Gomes, Apurva Gosavi, Gauri Ghule, Aniket Kundu, Buddhadev Purohit, and Rohit Srivastava. 2023. "Applications of Smart Material Sensors and Soft Electronics in Healthcare Wearables for Better User Compliance" Micromachines 14, no. 1: 121. https://doi.org/10.3390/mi14010121
APA StyleGhosh, A., Nag, S., Gomes, A., Gosavi, A., Ghule, G., Kundu, A., Purohit, B., & Srivastava, R. (2023). Applications of Smart Material Sensors and Soft Electronics in Healthcare Wearables for Better User Compliance. Micromachines, 14(1), 121. https://doi.org/10.3390/mi14010121