Filtenna with Frequency Reconfigurable Operation for Cognitive Radio and Wireless Applications
Abstract
:1. Introduction
2. Second Order BPF Design
3. Antenna with Wide Band Operation
4. The Suggested Filtenna
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirtania, S.G.; Elger, A.W.; Hasan, M.R.; Wisniewska, A.; Sekhar, K.; Karacolak, T.; Sekhar, P.K. Flexible Antennas: A Review. Micromachines 2020, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.A.; Ibrahim, A.A. Tunable band-notched UWB antenna from WLAN to WiMAX with open loop resonators using lumped capacitors. Appl. Comput. Electromagn. Soc. J. 2018, 33, 603–609. [Google Scholar]
- Ibrahim, A.A.; Ahmed, M.I.; Ahmed, M. A systematic investigation of four ports MIMO antenna depending on flexible material for UWB networks. Sci. Rep. 2022, 12, 14351. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Y.; Wang, W.; Kishk, A.A. A Simple Multi-Broadband Planar Antenna for LTE/GSM/UMTS and WLAN/WiMAX Mobile Handset Applications. IEEE Access 2018, 6, 74453–74461. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ali, W.A.E.; Aboushady, H.; Nasri, A.; Mittra, R.; Ghalib, A.; Hakim, B.; Rmili, H.; Jung, H.; Yun, D.-J.; et al. Performance Evaluation of SDR Blade RF using Wide-band Monopole Antenna for Spectrum Sensing Applications. Appl. Comput. Electromagn. Soc. 2021, 36, 419–424. [Google Scholar] [CrossRef]
- Salamin, M.A.; Ali, W.A.; Das, S.; Zugari, A. Design and investigation of a multi-functional antenna with variable wideband/notched UWB behavior for WLAN/X-band/UWB and Ku-band applications. AEU Int. J. Electron. Commun. 2019, 111, 152895. [Google Scholar] [CrossRef]
- Salamin, M.A.; Ali, W.; Zugari, A. Design and analysis of a miniaturized band-notched planar antenna incorporating a joint DMS and DGS band-rejection technique for UWB applications. Microsyst. Technol. 2018, 25, 3375–3385. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Ali, W.A. High gain, wideband and low mutual coupling AMC-based millimeter wave MIMO antenna for 5G NR networks. AEU Int. J. Electron. Commun. 2021, 142, 153990. [Google Scholar] [CrossRef]
- Mahajan, R.C.; Vyas, V. Wideband microstrip antenna for the detection of solutes in water. Eng. Rep. 2020, 3, e12336. [Google Scholar] [CrossRef]
- Tewary, T.; Maity, S.; Mukherjee, S.; Roy, A.; Sarkar, P.P.; Bhunia, S. High gain miniaturrized super-wideband microstrip patch antenna. Int. J. Commun. Syst. 2022, 35, e5181. [Google Scholar] [CrossRef]
- Ali, W.A.; Mansour, A.M.; Mohamed, D.A. Compact UWB wearable planar antenna mounted on different phantoms and human body. Microw. Opt. Technol. Lett. 2016, 58, 2531–2536. [Google Scholar] [CrossRef]
- Anveshkumar, N.; Mangal, J.; Das, S.; Madhav, B.T.P.; Ali, W.A.E. A low-cost miniaturized flower-shaped printed antenna with enhanced bandwidth for UWB applications. Prog. Electromagn. Res. B 2022, 96, 1–18. [Google Scholar] [CrossRef]
- Chen, X.; Dou, H. Wideband Patch Antenna with Shorting Vias. Int. J. Antennas Propag. 2022, 11, 2578409. [Google Scholar] [CrossRef]
- La Elo, Y.; Zulkifli, F.Y.; Rahardjo, E.T. Design of wideband microstrip antenna with parasitic element for 4G/LTE application. In Proceedings of the 2017 15th International Conference on Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, Nusa Dua, Bali, Indonesia, 24–27 July 2017; pp. 110–113. [Google Scholar]
- Xu, J.; Li, Z.; Pan, X.; Wen, X.; Cao, J.; Gong, W.; Yang, S.; Lei, M.; Yao, F.; Bi, K. Ultra-wideband electrostrictive mechanical antenna. arXiv 2021, arXiv:2112.14969. [Google Scholar] [CrossRef]
- Gupta, N.; Gill, N.; Maniraguha, F. Modeling and Performance Optimization of a Compact Three-Petalled Flower-Like Microstrip Patch Antenna for IoT Applications. Wirel. Commun. Mob. Comput. 2022, 2022, 5995213. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Alqaisei, M.A.; Sheta, A.-F.A.; Elshafiey, I. New Compact Antenna Array for MIMO Internet of Things Applications. Micromachines 2022, 13, 1481. [Google Scholar] [CrossRef]
- Elijah, A.A.; Mokayef, M. Miniature microstrip antenna for IoT application. Mater. Today: Proc. 2020, 29, 43–47. [Google Scholar] [CrossRef]
- Colaco, J.; Cotta, J. Design, fabrication and performance analysis of floodlight shaped microstrip antenna for Wi-Fi/IoT applications. Indones. J. Electr. Eng. Comput. Sci. 2022, 27, 1462–1469. [Google Scholar] [CrossRef]
- Jacob, N.; Kulkarni, M. An electronically switchable UWB to narrow band antenna for cognitive radio applications. Microw. Opt. Technol. Lett. 2020, 62, 2989–3001. [Google Scholar] [CrossRef]
- Parida, R.K.; Mishra, R.K.; Sahoo, N.K.; Muduli, A.; Panda, D.C.; Mishra, R.K. A hybrid multi-port antenna system for cognitive radio. Prog. Electromagn. Res. C 2020, 106, 1–16. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Abdullah, A.S. Integrated Spectrum Sensing and Frequency Reconfigurable Antennas for Inter-Weave Cognitive-Radio Applications. J. Physics: Conf. Ser. 2021, 1804, 012053. [Google Scholar] [CrossRef]
- Ali, W.A.E.; Moniem, R.M.A. Frequency reconfigurable triple band-notched ultra-wideband antenna with compact size. Prog. Electromagn. Res. C 2017, 73, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Zugari, A.; Ali, W.A.E.; Salamin, M.A.; Hamham, E.M. Compact Triple/Quadruple-Band Reconfigurable Monopole Antenna for Wireless Applications. J. Circuits, Syst. Comput. 2021, 30, 2150277. [Google Scholar] [CrossRef]
- Awan, W.; Naqvi, S.; Ali, W.; Hussain, N.; Iqbal, A.; Tran, H.; Alibakhshikenari, M.; Limiti, E. Design and Realization of a Frequency Reconfigurable Antenna with Wide, Dual, and Single-Band Operations for Compact Sized Wireless Applications. Electronics 2021, 10, 1321. [Google Scholar] [CrossRef]
- Cleetus, R.M.C.; Bala, G.J. Wide-narrow switchable bands microstrip antenna for cognitive radios. Prog. Electromagn. Res. C 2020, 98, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Amari, S. Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique. IEEE Trans. Microw. Theory Tech. 2000, 48, 1559–1564. [Google Scholar] [CrossRef] [Green Version]
- Seyfert, F.; Billa, S. General synthesis techniques for coupled resonator networks. IEEE Microw. Mag. 2007, 8, 98–104. [Google Scholar] [CrossRef]
Ref. | Size (mm2) | Reconfiguration | Substrate | Number of Ports | Bands (GHz) |
---|---|---|---|---|---|
[21] | 80 × 40 | 3 PIN diodes | FR4 (εr = 4.4) | 4 | 3.863, 4.664, 5.2, 5.834, 6.13, 7.355, 8.786 |
[22] | 50 × 70 | 2 PIN diodes | FR4 (εr = 4.4) | 2 | 2, 2.2, 3.25, 3.8, 4.3, 5.6 |
[23] | 20 × 20 | 2 PIN diodes | FR4 (εr = 4.4) | 1 | 3.6, 5.5, 8.1 |
[24] | 30 × 30 | - | FR4 (εr = 4.4) | 1 | 2.37, 4.1, 7, 9.76, 3.5, 7.2, 11.2 |
[25] | 25 × 15 | 2 PIN diodes | FR4 (εr = 4.4) | 1 | 3.5, 3.8, 6.1, 4–7.8 |
[26] | 40 × 40 | 6 MEMS | FR4 (εr = 4.4) | 1 | 5.8, 4, 5.6, 7.2, 7.8 |
proposed | 80 × 80 | 4 Varactor diodes | RO4003 (εr = 3.38) | 1 | 3, 2.8, 2.16,1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelghany, M.A.; Ali, W.A.E.; Mohamed, H.A.; Ibrahim, A.A. Filtenna with Frequency Reconfigurable Operation for Cognitive Radio and Wireless Applications. Micromachines 2023, 14, 160. https://doi.org/10.3390/mi14010160
Abdelghany MA, Ali WAE, Mohamed HA, Ibrahim AA. Filtenna with Frequency Reconfigurable Operation for Cognitive Radio and Wireless Applications. Micromachines. 2023; 14(1):160. https://doi.org/10.3390/mi14010160
Chicago/Turabian StyleAbdelghany, Mahmoud A., Wael A. E. Ali, Hesham A. Mohamed, and Ahmed A. Ibrahim. 2023. "Filtenna with Frequency Reconfigurable Operation for Cognitive Radio and Wireless Applications" Micromachines 14, no. 1: 160. https://doi.org/10.3390/mi14010160
APA StyleAbdelghany, M. A., Ali, W. A. E., Mohamed, H. A., & Ibrahim, A. A. (2023). Filtenna with Frequency Reconfigurable Operation for Cognitive Radio and Wireless Applications. Micromachines, 14(1), 160. https://doi.org/10.3390/mi14010160