A Phenomenological Model for Electrical Transport Characteristics of MSM Contacts Based on GNS
Abstract
:1. Introduction
2. Analytical Modeling
2.1. Analytical Models for Surface Potential and Subthreshold Slope
2.2. Analytical Model for Electrical Transport Characteristics and DIBL
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Welsher, K.; Liu, Z.; Daranciang, D.; Dai, H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 2008, 8, 586–590. [Google Scholar] [CrossRef]
- Arcos, T.D.L.; Oelhafen, P.; Mathys, D. Optical characterization of alignment and effective refractive index in carbon nanotube films. Nanotechnology 2007, 18, 265706. [Google Scholar] [CrossRef] [PubMed]
- Moutab Sahihazar, M.; Ahmadi, M.T.; Nouri, M.; Rahmani, M. Quantum conductance investigation on carbon nanotube based antibiotic sensor. J. Solid State Electrochem. 2019, 23, 1641–1650. [Google Scholar] [CrossRef]
- Star, A.; Tu, E.; Niemann, J.; Gabriel, J.C.P.; Joiner, C.S.; Valcke, C. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. USA 2005, 103, 921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourasl, A.H.; Ahmadi, M.T.; Rahmani, M.; Chin, H.C.; Lim, C.S.; Ismail, R.; Peng, M.L. Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res. Lett. 2014, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Snow, E.; Perkins, F.; Houser, E.; Badescu, S.; Reinecke, T. Chemical detection with a single-walled carbon nanotube capacitor. Science 2005, 307, 1942. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Li, L.J. Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene. Nano Rev. 2010, 1, 5354. [Google Scholar] [CrossRef]
- Moutab Sahihazar, M.; Nouri, M.; Rahmani, M.; Ahmadi, M.T.; Kasani, H. Fabrication of carbon nanoparticle strand under pulsed Arc discharge. Plasmonics 2018, 13, 2377–2386. [Google Scholar] [CrossRef]
- Dragoman, M.; Dragoman, D. Graphene-based quantum electronics. Quantum Electron. 2009, 33, 165–214. [Google Scholar] [CrossRef]
- Kiani, M.J.; Harun, F.C.; Ahmadi, M.T.; Rahmani, M.; Saeidmanesh, M.; Zare, M. Conductance modulation of charged lipid bilayer using electrolyte-gated graphene FET. Nanoscale Res. Lett. 2014, 9, 371. [Google Scholar] [CrossRef]
- Rahmani, M.; Ahmadi, M.T.; Karimi, H.; Saeidmanesh, M.; Akbari, E.; Ismail, R. Analytical modeling of trilayer graphene nanoribbon schottky-barrier FET for high speed switching applications. Nanoscale Res. Lett. 2013, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Ghadiry, M.H.; Manaf, A.A.; Nadi, M.; Rahmani, M.; Ahmadi, M.T. Ionization coefficient of monolayer graphene nanoribbon. Microelectron. Reliab. 2012, 52, 1396–1400. [Google Scholar] [CrossRef]
- Kiani, M.J.; Ahmadi, M.T.; Karimi, H.; Rahmani, M.; Hashim, A.; Che Harun, F.K. Analytical modeling of monolayer graphene-based ion-sensitive FET to pH changes. Nanoscale Res. Lett. 2013, 8, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmani, M.; Ghafoorifard, H.; Afrang, S.; Ahmadi, M.T.; Rahmani, K.; Ismail, R. Effect of solution pH and adsorbent concentration on the sensing parameters of TGN-based Electrochemical Biosensor. IET Nanobiotechnol. 2019, 13, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Karimi, H.; Yousof, R.; Eshrati, M.; Naghib, D.; Rahmani, M.; Ghadiry, M.H.; Akbari, E.; Ahmadi, M.T. Current-voltage modeling of graphene-based DNA sensor. Neural Comput. Appl. 2014, 24, 85–89. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Akbari, E.; Yousof, R.; Ahmadi, M.T.; Kiani, M.J.; Rahmani, M.; Karimi, H.; Saeidmanesh, M. The effect of concentration on gas sensor model based on graphene nanoribbon. Neural Comput. Appl. 2014, 24, 143–146. [Google Scholar] [CrossRef]
- Rahmani, K.; Rahmani, M.; Ahmadi, M.T.; Karimi, H.; Ismail, R. The effects of a stone–wales defect on the performance of a graphene-nanoribbon-based Schottky diode. J. Comput. Electron. 2019, 18, 802–812. [Google Scholar] [CrossRef]
- Pourasl, A.; Ahmadi, M.T.; Rahmani, M.; Ismail, R. Graphene based biosensor model for Escherichia Coli bacteria detection. J. Nanosci. Nanotechnol. 2017, 17, 601–605. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Wu, Z. Electronic and optical properties of the edge states in phosphorene quantum rings. Appl. Surf. Sci. 2021, 541, 148317. [Google Scholar] [CrossRef]
- Li, C.; Xie, Z.; Chen, Z.; Cheng, N.; Wang, J.; Zhu, G. Tunable bandgap and optical properties of black phosphorene nanotubes. Materials 2018, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Pereda, P.; Galícia-Hernández, J.M.; Cocoletzi, G.H. Optical properties calculations of the phosphorene-CrO3 system within the G0W0 and BSE approximations. Appl. Surf. Sci. 2017, 416, 266–272. [Google Scholar] [CrossRef]
- Liu, Y.; Bo, M.; Yang, X.; Zhang, P.P.; Sun, C.Q.; Huang, Y. Size modulation electronic and optical properties of phosphorene nanoribbons: DFT–BOLS approximation. Phys. Chem. Chem. Phys. 2017, 19, 5304–5309. [Google Scholar] [CrossRef]
- Cao, X.; Guo, J. Simulation of phosphorene field-effect transistor at the scaling limit. IEEE Trans. Electron Devices 2015, 62, 659–665. [Google Scholar] [CrossRef]
- Cui, S.; Pu, H.; Wells, S.A.; Wen, Z.; Mao, S.; Chang, J.; Hersam, M.C.; Chen, J. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 2015, 6, 8632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourasl, A.; Ahmadi, M.T.; Ismail, R. Carrier relaxation time modelling of monolayer black phosphorene. Micro Nano Lett. 2017, 12, 758–762. [Google Scholar] [CrossRef]
- Rahmani, M.; Ghafoorifard, H.; Ahmadi, M.T.; Habibiyan, H.; Rahbarpour, S.; Rahmani, K. Analytical investigation on the electro-optical properties of graphene nanoscrolls for SPR-based sensor application. J. Comput. Electron. 2017, 16, 787–795. [Google Scholar] [CrossRef]
- Li, T.S.; Lin, M.F.; Chang, S.C.; Chung, H.C. Optical excitations in carbon nanoscrolls. Phys. Chem. Chem. Phys. 2011, 13, 6138–6144. [Google Scholar] [CrossRef]
- Lingyin, M.; Yunxue, X.; Weiguo, L.; Zhang, L.; Zou, P.; Zhang, Y. Hydrogen microexplosion synthesis of platinum nanoparticles/nitrogen doped graphene nanoscrolls as new amperometric glucose biosensor. Electrochim. Acta 2015, 152, 330–337. [Google Scholar]
- Xia, D.; Xue, Q.; Xie, J.; Chen, H.; Lv, C.; Besenbacher, F.; Dong, M. Fabrication of carbon nanoscrolls from monolayer graphene. Small 2010, 6, 2010–2019. [Google Scholar] [CrossRef]
- Ahmadi, M.T.; Ahmadi, R.; Nguyen, T.K. Graphene nanoscroll geometry effect on transistor Performance. J. Electron. Mater. 2020, 49, 544–550. [Google Scholar] [CrossRef]
- Rahmani, M.; Ghafoorifard, H.; Ahmadi, M.T.; Rahmani, K. Analytical prediction of carbon nanoscroll-based electrochemical glucose biosensor performance. Int. J. Environ. Anal. Chem. 2017, 97, 1024–1036. [Google Scholar] [CrossRef]
- Saeidmanesh, M.; Rahmani, M.; Karimi, H.; Khaledian, M.; Ismail, R. Analytical model for threshold voltage of double gate bilayer graphene field effect transistors. Microelectron. Reliab. 2014, 54, 44–48. [Google Scholar] [CrossRef]
- Kanungo, S.; Ahmad, G.; Sahatiya, P.; Mukhopadhyay, A.; Chattopadhyay, S. 2D materials-based nanoscale tunneling field effect transistors: Current developments and future prospects. npj 2D Mater. Appl. 2022, 6, 83. [Google Scholar] [CrossRef]
- Hong, W.K.; Sohn, J.I.; Hwang, D.K.; Kwon, S.S.; Jo, G.; Song, S.; Kim, S.M.; Ko, H.J.; Park, S.J.; Welland, M.E.; et al. Tunable Electronic Transport Characteristics of Surface-Architecture-Controlled ZnO Nanowire Field Effect Transistors. Nano Lett. 2008, 8, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; GhafooriFard, H.; Ahmadi, M.T.; Rahmatpour, E. Investigating the semi-analytical models of momentum relaxation mean free time and path and ionization coefficient of trilayer graphene nanoribbon-based FETs. ECS J. Solid State Sci. Technol. 2022, 11, 071006. [Google Scholar] [CrossRef]
- Song, W.; Kim, K.W.; Kim, S.J.; Min, B.K.; Lim, Y.R.; Myung, S.; Lee, S.S.; Lim, J.; An, K.S. Threshold voltage manipulation of ZnO-graphene oxide hybrid thin film transistors via Au nanoparticles doping. 2D Mater. 2015, 2, 044007. [Google Scholar] [CrossRef]
- Anzi, L.; Tuktamyshev, A.; Fedorov, A.; Zurutuza, A.; Sanguinetti, S.; Sordan, R. Controlling the threshold voltage of a semiconductor field-effect transistor by gating its graphene gate. npj 2D Mater. Appl. 2022, 6, 28. [Google Scholar] [CrossRef]
- Chen, Q.; Harrell, E.M.; Meindl, J.D. A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 2003, 50, 1631–1637. [Google Scholar] [CrossRef]
- Taur, Y. Analytic solutions of charge and capacitance in symmetric and asymmetric double-gate MOSFETs. IEEE Trans. Electron. Devices 2001, 48, 2861–2869. [Google Scholar] [CrossRef]
- Sviličić, B.; Jovanović, V.; Suligoj, T. Analytical models of front- and back-gate potential distribution and threshold voltage for recessed source/drain UTB SOI MOSFETs. Solid-State Electron. 2009, 53, 540–547. [Google Scholar] [CrossRef]
- Neamen, D.A. Semiconductor Physics and Devices; University of New Mexico: Albuquerque, Mexico, 2003. [Google Scholar]
- Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Ismail, R.; Ahmadi, M.T.; Anwar, S. Advanced Nanoelectronics; Taylor and Francis: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Ahmadi, M.T.; Ismail, R.; Anwar, S. Handbook of Research on Nanoelectronic Sensor Modeling and Application; IGI Global Publisher: Hershey, PA, USA, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmani, M.; Ghafoorifard, H.; Ahmadi, M.T. A Phenomenological Model for Electrical Transport Characteristics of MSM Contacts Based on GNS. Micromachines 2023, 14, 184. https://doi.org/10.3390/mi14010184
Rahmani M, Ghafoorifard H, Ahmadi MT. A Phenomenological Model for Electrical Transport Characteristics of MSM Contacts Based on GNS. Micromachines. 2023; 14(1):184. https://doi.org/10.3390/mi14010184
Chicago/Turabian StyleRahmani, Meisam, Hassan Ghafoorifard, and Mohammad Taghi Ahmadi. 2023. "A Phenomenological Model for Electrical Transport Characteristics of MSM Contacts Based on GNS" Micromachines 14, no. 1: 184. https://doi.org/10.3390/mi14010184
APA StyleRahmani, M., Ghafoorifard, H., & Ahmadi, M. T. (2023). A Phenomenological Model for Electrical Transport Characteristics of MSM Contacts Based on GNS. Micromachines, 14(1), 184. https://doi.org/10.3390/mi14010184