Static Hydrophobic Cuprous Oxide Surface Fabricated via One-Step Laser-Induced Oxidation of a Copper Substrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Papadimitriou, L.; Economou, N.A.; Trivich, D. Heterojunction Solar Cells on Cuprous Oxide. Sol. Cells 1981, 3, 73–80. [Google Scholar] [CrossRef]
- Michael, J.J.; Iniyan, S. Performance Analysis of a Copper Sheet Laminated Photovoltaic Thermal Collector Using Copper Oxide–Water Nanofluid. Sol. Energy 2015, 119, 439–451. [Google Scholar] [CrossRef]
- Rakhshani, A.E. Preparation, Characteristics and Photovoltaic Properties of Cuprous Oxide—A Review. Solid-State Electron. 1986, 29, 7–17. [Google Scholar] [CrossRef]
- Chandrasekaran, S. A Novel Single Step Synthesis, High Efficiency and Cost Effective Photovoltaic Applications of Oxidized Copper Nano Particles. Sol. Energy Mater. Sol. Cells 2013, 109, 220–226. [Google Scholar] [CrossRef]
- Zuo, C.; Ding, L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small 2015, 11, 5528–5532. [Google Scholar] [CrossRef]
- Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Kondo, J.N.; Domen, K.; Hara, M.; Shinohara, K.; Tanaka, A. Cu2O as a Photocatalyst for Overall Water Splitting under Visible Light Irradiation. Chem. Commun. 1998, 2, 357–358. [Google Scholar] [CrossRef]
- Bagal, I.V.; Chodankar, N.R.; Hassan, M.A.; Waseem, A.; Johar, M.A.; Kim, D.-H.; Ryu, S.-W. Cu2O as an Emerging Photocathode for Solar Water Splitting—A Status Review. Int. J. Hydrogen Energy 2019, 44, 21351–21378. [Google Scholar] [CrossRef]
- de Jongh, P.E.; Vanmaekelbergh, D.; Kelly, J.J. Cu2O: A Catalyst for the Photochemical Decomposition of Water? Chem. Commun. 1999, 1069–1070. [Google Scholar] [CrossRef]
- Mall, A.K.; Kumar, P.; Garg, A.; Gupta, R. Synthesis, Growth, and Characterizations of CuO Single Crystal. In Proceedings of the AIP Conference Proceedings, Bikaner, India, 24–25 November 2017; Volume 1953, p. 070008. [Google Scholar]
- Bush, A.A.; Shkuratov, V.Y.; Kuz’menko, A.B.; Tishchenko, E.A. Growth and Morphological Study of Copper Oxide Single Crystals. Crystallogr. Rep. 2002, 47, 335–339. [Google Scholar] [CrossRef]
- Papadimitriou, L.; Economou, N.A. Preparation of Bulk Single Crystals of Cu2O by the Plastic Flow Method and Investigation of Their Electrical Properties. J. Cryst. Growth 1983, 64, 604–608. [Google Scholar] [CrossRef]
- Ebisuzaki, Y. Preparation of Monocrystalline Cuprous Oxide. J. Appl. Phys. 1961, 32, 2027–2028. [Google Scholar] [CrossRef]
- Toth, R.S.; Kilkson, R.; Trivich, D. Preparation of Large Area Single-Crystal Cuprous Oxide. J. Appl. Phys. 1960, 31, 1117–1121. [Google Scholar] [CrossRef]
- Su, M.; Liang, Z.; Zhao, C.; Liu, P.; Yue, S.; Xie, W. Preparation of High Quality Cu2O Crystal and Its Opto-Electronic Properties. Mater. Lett. 2016, 170, 80–84. [Google Scholar] [CrossRef]
- Chen, L.-C.; Chen, C.-C.; Liang, K.-C.; Chang, S.H.; Tseng, Z.-L.; Yeh, S.-C.; Chen, C.-T.; Wu, W.-T.; Wu, C.-G. Nano-Structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells. Nanoscale Res. Lett. 2016, 11, 402. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Kim, J.; Ko, K.; Matthews, M.J.; Suh, J.; Kwon, H.J.; Yoo, J.H. Laser-Induced Digital Oxidation for Copper-Based Flexible Photodetectors. Appl. Surf. Sci. 2021, 540, 148333. [Google Scholar] [CrossRef]
- Sedaghat, S.; Nejati, S.; Bermejo, L.H.; He, Z.; Alcaraz, A.M.; Roth, A.; Li, Z.; Pol, V.G.; Wang, H.; Rahimi, R. Laser-Induced Atmospheric Cu: XO Formation on Copper Surface with Enhanced Electrochemical Performance for Non-Enzymatic Glucose Sensing. J. Mater. Chem. C 2021, 9, 14997–15010. [Google Scholar] [CrossRef]
- Long, J.; Fan, P.; Gong, D.; Jiang, D.; Zhang, H.; Li, L.; Zhong, M. Superhydrophobic Surfaces Fabricated by Femtosecond Laser with Tunable Water Adhesion: From Lotus Leaf to Rose Petal. ACS Appl. Mater. Interfaces 2015, 7, 9858–9865. [Google Scholar] [CrossRef]
- Long, J.; Fan, P.; Zhong, M.; Zhang, H.; Xie, Y.; Lin, C. Superhydrophobic and Colorful Copper Surfaces Fabricated by Picosecond Laser Induced Periodic Nanostructures. Appl. Surf. Sci. 2014, 311, 461–467. [Google Scholar] [CrossRef]
- Long, J.; Pan, L.; Fan, P.; Gong, D.; Jiang, D.; Zhang, H.; Li, L.; Zhong, M. Cassie-State Stability of Metallic Superhydrophobic Surfaces with Various Micro/Nanostructures Produced by a Femtosecond Laser. Langmuir 2016, 32, 1065–1072. [Google Scholar] [CrossRef]
- Pan, Q.; Sun, B.; Liu, W.; Xue, W.; Cao, Y. Hyper Gyrating Droplets Generated on a Selective Laser Textured Heterogeneous Wettability Surface. Langmuir 2020, 36, 8123–8128. [Google Scholar] [CrossRef]
- He, A.; Liu, W.; Xue, W.; Yang, H.; Cao, Y. Nanosecond Laser Ablated Copper Superhydrophobic Surface with Tunable Ultrahigh Adhesion and Its Renewability with Low Temperature Annealing. Appl. Surf. Sci. 2018, 434, 120–125. [Google Scholar] [CrossRef]
- Ma, L.; Wang, L.; Li, C.; Guo, J.; Shrotriya, P.; Deng, C.; Zhao, J. Hybrid Nanosecond Laser Processing and Heat Treatment for Rapid Preparation of Super-Hydrophobic Copper Surface. Metals 2019, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Akbari, R.; Mohammadizadeh, M.R.; Khajeh Aminian, M.; Abbasnejad, M. Hydrophobic Cu2O Surfaces Prepared by Chemical Bath Deposition Method. Appl. Phys. A 2019, 125, 190. [Google Scholar] [CrossRef]
- Akbari, R.; Ramos Chagas, G.; Godeau, G.; Mohammadizadeh, M.; Guittard, F.; Darmanin, T. Intrinsically Water-Repellent Copper Oxide Surfaces; An Electro-Crystallization Approach. Appl. Surf. Sci. 2018, 443, 191–197. [Google Scholar] [CrossRef]
- Zhao, W.; Fu, W.; Yang, H.; Tian, C.; Li, M.; Li, Y.; Zhang, L.; Sui, Y.; Zhou, X.; Chen, H.; et al. Electrodeposition of Cu2O Films and Their Photoelectrochemical Properties. CrystEngComm 2011, 13, 2871. [Google Scholar] [CrossRef]
- Yu, X.; Sudo, M.; Itoigawa, F.; Ono, S. Patterning Oxidation via Femtosecond Laser Irradiation on Copper Substrate. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim, Hong Kong, China, 29 July–3 August 2018; OSA: Washington, DC, USA, 2018; p. W3A.93. [Google Scholar]
- Thomas, K.; Raymond, K.; Chadwick, J.; Waldock, M. The Effects of Short-term Changes in Environmental Parameters on the Release of Biocides from Antifouling Coatings: Cuprous Oxide and Tributyltin. Appl. Organomet. Chem. 1999, 13, 453–460. [Google Scholar] [CrossRef]
- Sears, W.M.; Fortin, E. Preparation and Properties of Cu2O/Cu Photovoltaic Cells. Sol. Energy Mater. 1984, 10, 93–103. [Google Scholar] [CrossRef]
- Yu, X.; Itoigawa, F.; Ono, S. Femtosecond Laser-Pulse-Induced Surface Cleavage of Zinc Oxide Substrate. Micromachines 2021, 12, 596. [Google Scholar] [CrossRef]
- Mori, H.; Sakakibara, A.; Itoigawa, F. Fine Protrusion Formation on Copper Substrate Using Atmospheric-Pressure Plasma Treatment. J. Surf. Finish. Soc. Jpn. 2019, 70, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-M.; Chen, S.; Liang, Y.-Z. Baseline Correction Using Adaptive Iteratively Reweighted Penalized Least Squares. Analyst 2010, 135, 1138. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, J.; Li, M.; Liu, K.; Guo, D.; Zhang, Y. Evaluating the Electric Property of Different Crystal Faces and Enhancing the Raman Scattering of Cu2O Microcrystal by Depositing Ag on the Surface. Curr. Appl. Phys. 2013, 13, 935–939. [Google Scholar] [CrossRef]
- Yu, P.Y.; Shen, Y.R. Resonance Raman Studies in Cu2O. I. The Phonon-Assisted 1s Yellow Excitonic Absorption Edge. Phys. Rev. B 1975, 12, 1377–1394. [Google Scholar] [CrossRef]
- Yu, P.Y.; Shen, Y.R. Multiple Resonance Effects on Raman Scattering at the Yellow-Exciton Series of Cu2O. Phys. Rev. Lett. 1974, 32, 373–376. [Google Scholar] [CrossRef]
- Compaan, A.; Cummins, H.Z. Resonant Quadrupole-Dipole Raman Scattering at the 1S Yellow Exciton in Cu2O. Phys. Rev. Lett. 1973, 31, 41–44. [Google Scholar] [CrossRef]
- Yu, P.Y.; Shen, Y.R.; Petroff, Y.; Falicov, L.M. Resonance Raman Scattering at the Forbidden Yellow Exciton in Cu2O. Phys. Rev. Lett. 1973, 30, 283–286. [Google Scholar] [CrossRef]
- Sánchez-Bajo, F.; Cumbrera, F.L. The Use of the Pseudo-Voigt Function in the Variance Method of X-ray Line-Broadening Analysis. J. Appl. Crystallogr. 1997, 30, 427–430. [Google Scholar] [CrossRef]
- Enzo, S.; Fagherazzi, G.; Benedetti, A.; Polizzi, S. A Profile-Fitting Procedure for Analysis of Broadened X-ray Diffraction Peaks. I. Methodology. J. Appl. Crystallogr. 1988, 21, 536–542. [Google Scholar] [CrossRef]
- Barton, J.K.; Vertegel, A.A.; Bohannan, E.W.; Switzer, J.A. Epitaxial Electrodeposition of Copper(I) Oxide on Single-Crystal Copper. Chem. Mater. 2001, 13, 952–959. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Han, J.; Yao, B. A Numerical Solution to the Effects of Surface Roughness on Water–Coal Contact Angle. Sci. Rep. 2021, 11, 459. [Google Scholar] [CrossRef]
- Maimaiti, Y.; Nolan, M.; Elliott, S.D. Reduction Mechanisms of the CuO(111) Surface through Surface Oxygen Vacancy Formation and Hydrogen Adsorption. Phys. Chem. Chem. Phys. 2014, 16, 3036. [Google Scholar] [CrossRef]
- Kwon, M.H.; Jee, W.Y.; Chu, C.N. Fabrication of Hydrophobic Surfaces Using Copper Electrodeposition and Oxidation. Int. J. Precis. Eng. Manuf. 2015, 16, 877–882. [Google Scholar] [CrossRef]
- Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A. Surface Properties of Copper Based Cermet Materials. Mater. Sci. Eng. B 2008, 152, 76–80. [Google Scholar] [CrossRef]
Samples | Current samples | Previous sample | |||
50 mW, 700 fs | 100 mW, 700 fs | 100 mW, 290 fs | Previous-1 | Previous-2 | |
laser wavelength | 1030 nm | 1030 nm | 1030 nm | 1045 nm | |
pulse duration | 700 fs | 700 fs | 290 fs | 700 fs | |
pulse energy | 0.5 μJ | 1 μJ | 1 μJ | 0.25 μJ | |
repetition rate | 100 kHz | 100 kHz | 100 kHz | 100 kHz | |
scan speed | 1 m/s | 1 m/s | 1 m/s | 1.53 m/s | |
scan line space | 10 μm | 10 μm | 10 μm | 22.5 μm | |
fabricated date | 5 April 2022 | 31 March 2022 | 18 March 2022 | 10 January 2018 | |
XRD date | 12 May 2022 | 12 May 2022 | 12 May 2022 | 15 January 2018 | 12 May 2022 |
CA date | 23–25 May 2022 | 23–25 May 2022 | 23–25 May 2022 | 20 July 2020 | 23–25 May 2022 |
Sa date | 27 December 2022 | 27 December 2022 | 27 December 2022 | 27 December 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Tanaka, Y.; Kakiuchi, T.; Ishida, T.; Saitoh, K.; Itoigawa, F.; Kuwahara, M.; Ono, S. Static Hydrophobic Cuprous Oxide Surface Fabricated via One-Step Laser-Induced Oxidation of a Copper Substrate. Micromachines 2023, 14, 185. https://doi.org/10.3390/mi14010185
Yu X, Tanaka Y, Kakiuchi T, Ishida T, Saitoh K, Itoigawa F, Kuwahara M, Ono S. Static Hydrophobic Cuprous Oxide Surface Fabricated via One-Step Laser-Induced Oxidation of a Copper Substrate. Micromachines. 2023; 14(1):185. https://doi.org/10.3390/mi14010185
Chicago/Turabian StyleYu, Xi, Yoshiki Tanaka, Tomoki Kakiuchi, Takafumi Ishida, Koh Saitoh, Fumihiro Itoigawa, Makoto Kuwahara, and Shingo Ono. 2023. "Static Hydrophobic Cuprous Oxide Surface Fabricated via One-Step Laser-Induced Oxidation of a Copper Substrate" Micromachines 14, no. 1: 185. https://doi.org/10.3390/mi14010185
APA StyleYu, X., Tanaka, Y., Kakiuchi, T., Ishida, T., Saitoh, K., Itoigawa, F., Kuwahara, M., & Ono, S. (2023). Static Hydrophobic Cuprous Oxide Surface Fabricated via One-Step Laser-Induced Oxidation of a Copper Substrate. Micromachines, 14(1), 185. https://doi.org/10.3390/mi14010185