An Integrated Pump-Controlled Variable Coupler Fabricated by Ultrafast Laser Writing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of a Coupler by Femtosecond Laser Writing
2.2. Experimental Setup
3. Results
3.1. The Coupling Ratio’s Dependence on Relative Incoupling Position
3.2. The Coupling Ratio’s Dependence on the Optical Pump’s Power
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agrell, E.; Karlsson, M.; Chraplyvy, A.R.; Richardson, D.J.; Krummrich, P.M.; Winzer, P.; Roberts, K.; Fischer, J.K.; Savory, S.J.; Eggleton, B.J. Roadmap of optical communications. J. Opt. 2016, 18, 63002. [Google Scholar] [CrossRef]
- Rickman, A. The commercialization of silicon photonics. Nat. Photonics 2014, 8, 579–582. [Google Scholar] [CrossRef]
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 73003. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, C. Femtosecond laser three-dimensional micro-and nanofabrication. Appl. Phys. Rev. 2014, 1, 41303. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, D.; Macdonald, J.R.; Kar, A.K. Ultrafast laser inscription: Perspectives on future integrated applications. Laser Photon. Rev. 2014, 8, 827–846. [Google Scholar] [CrossRef] [Green Version]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 4, 219. [Google Scholar] [CrossRef]
- Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast laser processing of materials: From science to industry. Light Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef] [Green Version]
- Sugioka, K. Progress in ultrafast laser processing and future prospect. Nanophotonics 2017, 6, 393–413. [Google Scholar] [CrossRef] [Green Version]
- Stoian, R. Volume photoinscription of glasses: Three-dimensional micro-and nanostructuring with ultrashort laser pulses. Appl. Phys. A 2020, 126, 438. [Google Scholar] [CrossRef]
- Streltsov, A.M.; Borrelli, N.F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett. 2001, 26, 42–43. [Google Scholar] [CrossRef]
- Eaton, S.M.; Chen, W.; Zhang, L.; Zhang, H.; Iyer, R.; Aitchison, J.S.; Herman, P.R. Telecom-band directional coupler written with femtosecond fiber laser. IEEE Photonics Technol. Lett. 2006, 18, 2174–2176. [Google Scholar] [CrossRef]
- Kowalevicz, A.M.; Sharma, V.; Ippen, E.P.; Fujimoto, J.G.; Minoshima, K. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. Opt. Lett. 2005, 30, 1060–1062. [Google Scholar] [CrossRef]
- Chen, W.J.; Eaton, S.M.; Zhang, H.; Herman, P.R. Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses. Opt. Express 2008, 16, 11470–11480. [Google Scholar] [CrossRef]
- Grenier, J.R.; Fernandes, L.A.; Herman, P.R. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics. Opt. Express 2015, 23, 16760–16771. [Google Scholar] [CrossRef] [Green Version]
- Riesen, N.; Gross, S.; Love, J.D.; Withford, M.J. Femtosecond direct-written integrated mode couplers. Opt. Express 2014, 22, 29855–29861. [Google Scholar] [CrossRef]
- Corrielli, G.; Atzeni, S.; Piacentini, S.; Pitsios, I.; Crespi, A.; Osellame, R. Symmetric polarization-insensitive directional couplers fabricated by femtosecond laser writing. Opt. Express 2018, 26, 15101–15109. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; de Aldana, J.R.V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev. 2014, 8, 251–275. [Google Scholar] [CrossRef]
- Li, L.; Kong, W.; Chen, F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: A concise review and recent advances. Adv. Photonics 2022, 4, 24002. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Romero, C.; de Aldana, J.R.V.; Chen, F. Femtosecond laser irradiation on Nd: YAG crystal: Surface ablation and high-spatial-frequency nanograting. Appl. Surf. Sci. 2018, 441, 372–380. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Chen, F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photon. Rev. 2020, 14, 1900407. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Xing, H.; Romero, C.; de Aldana, J.R.V.; Chen, F. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal. Opt. Laser Technol. 2018, 103, 82–88. [Google Scholar] [CrossRef]
- Skryabin, N.; Kalinkin, A.; Dyakonov, I.; Kulik, S. Femtosecond laser written depressed-cladding waveguide 2 × 2, 1 × 2 and 3 × 3 directional couplers in Tm3+: YAG crystal. Micromachines 2019, 11, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.E.; Calmano, T.; Kränkel, C.; Rotermund, F. Controllable Dynamic Single-and Dual-Channel Graphene Q-Switching in a Beam-Splitter-Type Channel Waveguide Laser. Laser Photon. Rev. 2022, 16, 2100501. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Xu, J.; Lin, Z.; Yu, H.; Wang, M.; Fang, Z.; Cheng, Y.; Gong, Q.; Li, Y. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photonics Res. 2019, 7, 503–507. [Google Scholar] [CrossRef]
- Fleming, S.C.; Whitley, T.J. Measurement of pump induced refractive index change in erbium doped fibre amplifier. Electron. Lett. 1991, 27, 1959–1961. [Google Scholar] [CrossRef]
- Thirstrup, C.; Shi, Y.; Palsdottir, B. Pump-induced refractive index modulation and dispersions in Er3+-doped fibers. J. Light. Technol. 1996, 14, 732–738. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.L.; Wu, B. Optical switching in twin-core erbium-doped fibers. Opt. Lett. 1992, 17, 255–257. [Google Scholar] [CrossRef]
- Pantell, R.H.; Digonnet, M.J.; Sadowski, R.W.; Shaw, H.J. Analysis of nonlinear optical switching in an erbium-doped fiber. J. Light. Technol. 1993, 11, 1416–1424. [Google Scholar]
- Digonnet, M.J.; Sadowski, R.W.; Shaw, H.J.; Pantell, R.H. Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review. Opt. Fiber Technol. 1997, 3, 44–64. [Google Scholar] [CrossRef]
- Li, C.; Xu, G.; Ma, L.; Dou, N.; Gu, H. An erbium-doped fibre nonlinear coupler with coupling ratios controlled by pump power. J. Opt. A Pure Appl. Opt. 2005, 7, 540. [Google Scholar]
- Garcia, H.; Johnson, A.M.; Oguama, F.A.; Trivedi, S. Pump-induced nonlinear refractive-index change in erbium-and ytterbium-doped fibers: Theory and experiment. Opt. Lett. 2005, 30, 1261–1263. [Google Scholar] [CrossRef]
- Ams, M.; Marshall, G.D.; Dekker, P.; Piper, J.A.; Withford, M.J. Ultrafast laser written active devices. Laser Photon. Rev. 2009, 3, 535–544. [Google Scholar] [CrossRef]
- Desurvire, E. Study of the complex atomic susceptibility of erbium-doped fiber amplifiers. J. Light. Technol. 1990, 8, 1517–1527. [Google Scholar] [CrossRef]
- Philipps, J.F.; Töpfer, T.; Ebendorff-Heidepriem, H.; Ehrt, D.; Sauerbrey, R. Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses. Appl. Phys. B 2001, 72, 399–405. [Google Scholar] [CrossRef]
- Chu, P.L. Nonlinear effects in rare-earth-doped fibers and waveguides. In Proceedings of the LEOS’97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting, San Franciso, CA, USA, 10–13 November 1997. [Google Scholar]
- Teddy-Fernandez, T.; Haro-González, P.; Sotillo, B.; Hernandez, M.; Jaque, D.; Fernandez, P.; Domingo, C.; Siegel, J.; Solis, J. Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass. Opt. Lett. 2013, 38, 5248–5251. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, T.T.; Sakakura, M.; Eaton, S.M.; Sotillo, B.; Siegel, J.; Solis, J.; Shimotsuma, Y.; Miura, K. Bespoke photonic devices using ultrafast laser driven ion migration in glasses. Prog. Mater. Sci. 2018, 94, 68–113. [Google Scholar] [CrossRef]
- del Hoyo, J.; Moreno-Zárate, P.; Escalante, G.; Vallés, J.A.; Fernández, P.; Solís, J. High-efficiency waveguide optical amplifiers and lasers via FS-laser induced local modification of the glass composition. J. Light. Technol. 2017, 35, 2955–2959. [Google Scholar] [CrossRef]
- del Hoyo, J.; Vazquez, R.M.; Sotillo, B.; Fernandez, T.T.; Siegel, J.; Fernández, P.; Osellame, R.; Solis, J. Control of waveguide properties by tuning femtosecond laser induced compositional changes. Appl. Phys. Lett. 2017, 105, 131101. [Google Scholar] [CrossRef] [Green Version]
- del Hoyo, J.; Berdejo, V.; Fernandez, T.T.; Ferrer, A.; Ruiz, A.; Valles, J.A.; Rebolledo, M.A.; Ortega-Feliu, I.; Solis, J. Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm. Laser Phys. Lett. 2013, 10, 105802. [Google Scholar] [CrossRef] [Green Version]
- Benedicto, D.; Días, A.; Martín, J.C.; Vallés, J.A.; Solís, J. Characterization of multicore integrated active waveguides written in an Er3+/Yb3+ codoped phosphate glass. J. Light. Technol. 2021, 39, 5061–5068. [Google Scholar] [CrossRef]
- Benedicto, D.; Vallés, J.A.; Martín, J.C. Characterization of asymmetrically fed Er3+/Yb3+ co-doped double core integrated waveguides. J. Light. Technol. 2022, 40, 5910–5916. [Google Scholar] [CrossRef]
Compound | Weight Percentage |
---|---|
P2O5 | 62.3 |
La2O3 | 17.3 |
Yb2O3 | 5.5 |
K2O | 5.0 |
Al2O3 | 4.8 |
Er2O3 | 2.7 |
SiO2 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedicto, D.; Martín, J.C.; Dias-Ponte, A.; Solis, J.; Vallés, J.A. An Integrated Pump-Controlled Variable Coupler Fabricated by Ultrafast Laser Writing. Micromachines 2023, 14, 1370. https://doi.org/10.3390/mi14071370
Benedicto D, Martín JC, Dias-Ponte A, Solis J, Vallés JA. An Integrated Pump-Controlled Variable Coupler Fabricated by Ultrafast Laser Writing. Micromachines. 2023; 14(7):1370. https://doi.org/10.3390/mi14071370
Chicago/Turabian StyleBenedicto, David, Juan C. Martín, Antonio Dias-Ponte, Javier Solis, and Juan A. Vallés. 2023. "An Integrated Pump-Controlled Variable Coupler Fabricated by Ultrafast Laser Writing" Micromachines 14, no. 7: 1370. https://doi.org/10.3390/mi14071370
APA StyleBenedicto, D., Martín, J. C., Dias-Ponte, A., Solis, J., & Vallés, J. A. (2023). An Integrated Pump-Controlled Variable Coupler Fabricated by Ultrafast Laser Writing. Micromachines, 14(7), 1370. https://doi.org/10.3390/mi14071370