A Wind-Solar Hybrid Energy Harvesting Approach Based on Wind-Induced Vibration Structure Applied in Smart Agriculture
Abstract
:1. Introduction
2. Self-Powered Wireless Sensor and Environment Energy Sources
3. Principles of the Novel Wind–Solar Hybrid Energy Harvesting Approach
3.1. Operation Principles
3.2. Implementation of the Proposed Technique
4. Experimental Setup and Results Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhai, R.; Lou, Z. Chinese agricultural output and TFP: 1661–2019. Econ. Lett. 2022, 213, 110415. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, M.; Wang, Q.; Li, M.; Gao, W. Summary of China Development Forum 2015 and the 2nd International Conference on Smart Agriculture Innovative Development. Int. J. Agric. Biol. Eng. 2015, 8, 176–177. [Google Scholar]
- Sinha, B.B.; Dhanalakshmi, R. Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Gener. Comput. Syst. 2022, 126, 169–184. [Google Scholar] [CrossRef]
- Antonacci, A.; Arduini, F.; Moscone, D.; Palleschi, G.; Scognamiglio, V. Nanostructured (Bio)sensors for smart agriculture. Trac-Trends Anal. Chem. 2018, 98, 95–103. [Google Scholar] [CrossRef]
- Cicioğlu, M.; Çalhan, A. Smart agriculture with internet of things in cornfields. Comput. Electr. Eng. 2021, 90, 106982. [Google Scholar] [CrossRef]
- Wu, J.; Han, S.; Liu, J. Application Progress of Agricultural Internet of Things in Major Countries. J. Phys. Conf. Ser. 2018, 1087, 032013. [Google Scholar] [CrossRef]
- Tao, W.; Zhao, L.; Wang, G.; Liang, R. Review of the internet of things communication technologies in smart agriculture and challenges. Comput. Electron. Agric. 2021, 189, 106352. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Yue, M.; Yao, H.; Tian, H.; Sun, X.; Wu, Y.; Huang, Z.; Ban, D.; Zheng, H. Hybridized energy harvesting device based on high-performance triboelectric nanogenerator for smart agriculture applications. Nano Energy 2022, 102, 107681. [Google Scholar] [CrossRef]
- Gui, Y.; Wang, Y.; He, S.; Yang, J. Self-powered smart agriculture real-time sensing device based on hybrid wind energy harvesting triboelectric-electromagnetic nanogenerator. Energy Convers. Manag. 2022, 269, 116098. [Google Scholar] [CrossRef]
- Cao, W.; Xu, J.; Shan, J.; Sun, R. Research and Application of Wireless Sensor Networks in Agriculture. In 2017 International Conference on Electronic Industry and Automation (EIA); Atlantis Press: Amsterdam, The Netherlands, 2017; pp. 151–154. [Google Scholar]
- Washizu, A.; Nakano, S. Exploring the characteristics of smart agricultural development in Japan: Analysis using a smart agricultural kaizen level technology map. Comput. Electron. Agric. 2022, 198, 107001. [Google Scholar] [CrossRef]
- Hu, G.; Yi, Z.; Lu, L.; Huang, Y.; Zhai, Y.; Liu, J.; Yang, B. Self-powered 5G NB-IoT system for remote monitoring applications. Nano Energy 2021, 87, 106104. [Google Scholar] [CrossRef]
- Gong, L.; Yan, J.; Chen, Y.; An, J.; He, L.; Zheng, L.; Zou, Z. An IoT-based intelligent irrigation system with data fusion and a self-powered wide-area network. J. Ind. Inf. Integr. 2022, 29, 100367. [Google Scholar] [CrossRef]
- Liao, W.; Wen, Y.; Kan, J.; Huang, X.; Wang, S.; Li, Z.; Zhang, Z. A joint-nested structure piezoelectric energy harvester for high-performance wind-induced vibration energy harvesting. Int. J. Mech. Sci. 2022, 227, 107443. [Google Scholar] [CrossRef]
- Tsai, L.W.; Alipour, A. Studying the wind-induced vibrations of a traffic signal structure through long term health monitoring. Eng. Struct. 2021, 247, 112837. [Google Scholar] [CrossRef]
- Gao, D.; Chen, W.; Eloy, C.; Li, H. Multi-mode responses, rivulet dynamics, flow structures and mechanism of rain-wind induced vibrations of a flexible cable. J. Fluids Struct. 2018, 82, 154–172. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Fan, K.; Ji, H.; Qiu, J. Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism. Mech. Syst. Signal Process. 2022, 162, 108038. [Google Scholar] [CrossRef]
- Deng, F.; Yue, X.H.; Fan, X.Y.; Guan, S.P.; Xu, Y.; Chen, J. Multisource Energy Harvesting System for a Wireless Sensor Network Node in the Field Environment. IEEE Internet Things J. 2019, 6, 918–927. [Google Scholar] [CrossRef]
- Shi, G.; Yang, Y.; Xia, Y.; Chen, J.; Peng, Y. Research progress of piezoelectric vibration energy harvesting interface circuit. Electr. Meas. Instrum. 2019, 56, 26–32. [Google Scholar]
- Wu, Y.; Badel, A.; Formosa, F.; Liu, W.; Agbossou, A. Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. J. Intell. Mater. Syst. Struct. 2012, 24, 1445–1458. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Badel, A.; Ji, H.; Qiu, J. Semi-active piezoelectric structural damping adjustment and enhancement by synchronized switching on energy injection technique. J. Sound Vib. 2022, 527, 116866. [Google Scholar] [CrossRef]
Original | Dust Cover | After Cleaning | |
---|---|---|---|
Output Power [mW] | 58.56 | 10.58 | 26.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, L.; Ma, S.; Tao, P.; Pei, W.; Liu, Y.; Tao, L.; Wu, Y. A Wind-Solar Hybrid Energy Harvesting Approach Based on Wind-Induced Vibration Structure Applied in Smart Agriculture. Micromachines 2023, 14, 58. https://doi.org/10.3390/mi14010058
Xia L, Ma S, Tao P, Pei W, Liu Y, Tao L, Wu Y. A Wind-Solar Hybrid Energy Harvesting Approach Based on Wind-Induced Vibration Structure Applied in Smart Agriculture. Micromachines. 2023; 14(1):58. https://doi.org/10.3390/mi14010058
Chicago/Turabian StyleXia, Lili, Shaofei Ma, Peng Tao, Wanpeng Pei, Yong Liu, Lei Tao, and Yipeng Wu. 2023. "A Wind-Solar Hybrid Energy Harvesting Approach Based on Wind-Induced Vibration Structure Applied in Smart Agriculture" Micromachines 14, no. 1: 58. https://doi.org/10.3390/mi14010058
APA StyleXia, L., Ma, S., Tao, P., Pei, W., Liu, Y., Tao, L., & Wu, Y. (2023). A Wind-Solar Hybrid Energy Harvesting Approach Based on Wind-Induced Vibration Structure Applied in Smart Agriculture. Micromachines, 14(1), 58. https://doi.org/10.3390/mi14010058