An On-Chip Microscale Vacuum Chamber with High Sealing Performance Using Graphene as Lateral Feedthrough
Abstract
:1. Introduction
2. Device Structure and Processing
3. Results and Discussion
3.1. Characterization of Graphene Electrode
3.2. Airtightness of Si–Glass Bonding Interface
3.3. Sealing Performance of Microscale Vacuum Chamber
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, A.; Su, Y.; Shi, Q.; Yang, B.; Xu, Y. Vacuum packaged micromachined gyroscope. In Proceedings of the 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 19–21 January 2006; pp. 407–409. [Google Scholar]
- Zhao, J.; Yuan, Q.; Kan, X.; Yang, J.; Yang, F. A low feed-through 3D vacuum packaging technique with silicon vias for RF MEMS resonators. J. Micromech. Microeng. 2016, 27, 014003. [Google Scholar] [CrossRef]
- Górecka-Drzazga, A.J.V. Miniature and MEMS-type vacuum sensors and pumps. Vacuum 2009, 83, 1419–1426. [Google Scholar] [CrossRef]
- Li, X.; Abe, T.; Liu, Y.; Esashi, M. Fabrication of high-density electrical feed-throughs by deep-reactive-ion etching of Pyrex glass. J. Microelectromech. Syst. 2002, 11, 625–630. [Google Scholar] [CrossRef]
- Liang, H.; He, X.; Xiong, B.J.I.S.J. Two-Mask Wafer-Level Vacuum Packaging with Bulk-Si 3D Interconnects for MEMS Devices and Its Package Performances. IEEE Sens. J. 2022, 22, 14522–14530. [Google Scholar] [CrossRef]
- Torunbalci, M.M.; Gavcar, H.D.; Yesil, F.; Alper, S.E.; Akin, T.J.I.S.J. An All-Silicon Process Platform for Wafer-Level Vacuum Packaged MEMS Devices. IEEE Sens. J. 2021, 21, 13958–13964. [Google Scholar] [CrossRef]
- Tao, J.; Liu, W.; Guo, D.; Zhao, Z.; Chen, Q.; Wei, X.J.V.E. Vacuum Anode Bonding of an On-Chip Electron Source. Vac. Electron. 2020, 62, 28–33. [Google Scholar]
- Blanco, F.J.; Agirregabiria, M.; Tijero, M.; Berganzo, J.; Garcia, J.; Arroyo, M.; Ruano, J.M.; Aramburu, I.; Mayora, K. Novel low-temperature CMOS-compatible full-wafer-bonding process for the fabrication of 3D embedded microchannels using SU-8. In Proceedings of the Device & Process Technologies for Mems, Microelectronics, & Photonics III, Perth, Australia, 10–12 December 2004. [Google Scholar]
- Esashi, M.; Ura, N.; Matsumoto, Y. Anodic bonding for integrated capacitive sensors. In Proceedings of the 1992 Proceedings IEEE Micro Electro Mechanical Systems, Travemunde, Germany, 4–7 February 1992; pp. 43–48. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A.J.S. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Yoshikawa, T.; Bandow, S.; Tomita, M.; Hayashi, T.J.P.R.B. Interlayer spacings in carbon nanotubes. Phys. Rev. B 1993, 48, 1907. [Google Scholar] [CrossRef]
- Bae, S.; Kim, S.J.; Shin, D.; Ahn, J.-H.; Hong, B.H.J.P.S. Towards industrial applications of graphene electrodes. Phys. Scr. 2012, 2012, 014024. [Google Scholar] [CrossRef]
- Lock, E.H.; Baraket, M.; Laskoski, M.; Mulvaney, S.P.; Lee, W.K.; Sheehan, P.E.; Hines, D.R.; Robinson, J.T.; Tosado, J.; Fuhrer, M.S.J.N.l. High-quality uniform dry transfer of graphene to polymers. Nano Lett. 2012, 12, 102–107. [Google Scholar] [CrossRef]
- Malard, L.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.J.P.R. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, Y.; Yu, T.; You, Y.; Shen, Z. Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy. Phys. Rev. B 2008, 77, 235403. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Ni, Z.H.; Yu, T.; Shen, Z.X.; Wang, H.M.; Wu, Y.H.; Chen, W.; Shen Wee, A.T. Raman Studies of Monolayer Graphene: The Substrate Effect. J. Phys. Chem. C 2008, 112, 10637–10640. [Google Scholar] [CrossRef]
- Woetzel, S.; Ihring, A.; Kessler, E.; Franke, D.; Dellith, J.; Brown, A.; Hänschke, F.; Meyer, H.; Schmidt, H.; Frank, T. Hermetic sealing of MEMS including lateral feedthroughs and room-temperature anodic bonding. J. Micromech. Microeng. 2018, 28, 075013. [Google Scholar] [CrossRef]
- Torunbalci, M.M.; Alper, S.E.; Akin, T. A method for wafer level hermetic packaging of SOI-MEMS devices with embedded vertical feedthroughs using advanced MEMS process. J. Micromech. Microeng. 2015, 25, 125030. [Google Scholar] [CrossRef]
- Torunbalci, M.M.; Alper, S.E.; Akin, T.J.S.; Physical, A.A. Wafer level hermetic sealing of MEMS devices with vertical feedthroughs using anodic bonding. Sens. Actuators A Phys. 2015, 224, 169–176. [Google Scholar] [CrossRef]
- Li, W.; Xiao, D.; Wu, X.; Hou, Z.; Chen, Z.; Wang, X.; Zhou, J. A new fabrication process of TGV substrate with silicon vertical feedthroughs using double sided glass in silicon reflow process. J. Mater. Sci. Mater. Electron. 2017, 28, 3917–3923. [Google Scholar] [CrossRef]
- Paschen, F. Ueber die Zum Funkenübergang in Luft: Wasserstoff und Kohlensäure bei Verschiedenen Drucken Erforderliche Potentialdifferenz; JA Barth: Leipzig, Germany, 1889. [Google Scholar]
- Burm, K.T.A.L. Calculation of the Townsend discharge coefficients and the Paschen curve coefficients. Contrib. Plasma Phys. 2007, 47, 177–182. [Google Scholar] [CrossRef]
- Go, D.B.; Pohlman, D.A. A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps. J. Appl. Phys. 2010, 107, 103303. [Google Scholar] [CrossRef] [Green Version]
- Corman, T.; Enoksson, P.; Stemme, G.J.S.; Physical, A.A. Low-pressure-encapsulated resonant structures with integrated electrodes for electrostatic excitation and capacitive detection. Sens. Actuators A Phys. 1998, 66, 160–166. [Google Scholar] [CrossRef]
- Grzebyk, T.; Górecka-Drzazga, A. Miniature ion-sorption vacuum pump with CNT field-emission electron source. J. Micromech. Microeng. 2012, 23, 015007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Zhan, F.; Rao, W.; Zhao, Y.; Fang, Z.; Tu, Z.; Li, Z.; Guo, D.; Wei, X. An On-Chip Microscale Vacuum Chamber with High Sealing Performance Using Graphene as Lateral Feedthrough. Micromachines 2023, 14, 84. https://doi.org/10.3390/mi14010084
Yu P, Zhan F, Rao W, Zhao Y, Fang Z, Tu Z, Li Z, Guo D, Wei X. An On-Chip Microscale Vacuum Chamber with High Sealing Performance Using Graphene as Lateral Feedthrough. Micromachines. 2023; 14(1):84. https://doi.org/10.3390/mi14010084
Chicago/Turabian StyleYu, Panpan, Fangyuan Zhan, Weidong Rao, Yanqing Zhao, Zheng Fang, Zidong Tu, Zhiwei Li, Dengzhu Guo, and Xianlong Wei. 2023. "An On-Chip Microscale Vacuum Chamber with High Sealing Performance Using Graphene as Lateral Feedthrough" Micromachines 14, no. 1: 84. https://doi.org/10.3390/mi14010084
APA StyleYu, P., Zhan, F., Rao, W., Zhao, Y., Fang, Z., Tu, Z., Li, Z., Guo, D., & Wei, X. (2023). An On-Chip Microscale Vacuum Chamber with High Sealing Performance Using Graphene as Lateral Feedthrough. Micromachines, 14(1), 84. https://doi.org/10.3390/mi14010084