Preparation of Elastic Macroporous Graphene Aerogel Based on Pickering Emulsion Method and Combination with ETPU for High Performance Piezoresistive Sensors
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Preparation of the Macroporous Graphene Aerogel
2.3. Assemble of MGA-ETPU Sensor
2.4. Characterization
2.5. Piezoresistive Performance of MGA-ETPU Sensor
3. Results and Discussion
3.1. Morphological and Structural Studies of MGA
3.2. Mechanical Compression Performance Characterization of MGA-ETPU Sensors
3.3. Pressure Sensing Performance of MGA-ETPU Sensor
3.4. Integrating MGA-ETPU into Smart Shoes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, D.; Wang, Y.; Xie, P.; Zhang, C.; Li, M.; Liu, H.; Zhou, L.; Wei, C.; Yu, C.; Chen, Y. A Resilient and Lightweight Cellulose/Graphene Oxide/Polymer-Derived Multifunctional Carbon Aerogel Generated from Pickering Emulsion toward a Wearable Pressure Sensor. J. Colloid Interface Sci. 2022, 628, 574–587. [Google Scholar] [CrossRef]
- Wei, S.; Qiu, X.; An, J.; Chen, Z.; Zhang, X. Highly Sensitive, Flexible, Green Synthesized Graphene/Biomass Aerogels for Pressure Sensing Application. Compos. Sci. Technol. 2021, 207, 108730. [Google Scholar] [CrossRef]
- Wang, Z.; Bu, M.; Xiu, K.; Sun, J.; Hu, N.; Zhao, L.; Gao, L.; Kong, F.; Zhu, H.; Song, J.; et al. A Flexible, Stretchable and Triboelectric Smart Sensor Based on Graphene Oxide and Polyacrylamide Hydrogel for High Precision Gait Recognition in Parkinsonian and Hemiplegic Patients. Nano Energy 2022, 104, 107978. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, H.; Yang, Z.; Yang, J.; Wang, Z.; Gao, K. Macroporous and Free-Shape Reduced Graphene Oxide Paper as Sensitive Wearable Pressure and Strain Sensors. Appl. Phys. A 2022, 128, 948. [Google Scholar] [CrossRef]
- Aznar-Gimeno, R.; Labata-Lezaun, G.; Adell-Lamora, A.; Abadía-Gallego, D.; del-Hoyo-Alonso, R.; González-Muñoz, C. Deep Learning for Walking Behaviour Detection in Elderly People Using Smart Footwear. Entropy 2021, 23, 777. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Zhang, X.; Zhao, C.; Gan, C.; Zhu, C. Hydrophobic and Stable MXene/ Reduced Graphene Oxide/Polymer Hybrid Materials Pressure Sensors with an Ultrahigh Sensitive and Rapid Response Speed Pressure Sensor for Health Monitoring. Mater. Chem. Phys. 2021, 271, 124729. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Chen, D.; Miao, J.; Lin, S.; Cui, D. Highly Sensitive and Flexible Piezoresistive Pressure Sensors Based on 3D Reduced Graphene Oxide Aerogel. IEEE Electron Device Lett. 2021, 42, 589–592. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, J.; Gao, Q.; Zhang, J.; Zhang, J.; Omisore, O.M.; Wang, L.; Li, H. Polydimethylsiloxane (PDMS)-Based Flexible Resistive Strain Sensors for Wearable Applications. Appl. Sci. 2018, 8, 345. [Google Scholar] [CrossRef]
- Wan, S.; Bi, H.; Zhou, Y.; Xie, X.; Su, S.; Yin, K.; Sun, L. Graphene Oxide as High-Performance Dielectric Materials for Capacitive Pressure Sensors. Carbon 2017, 114, 209–216. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, Q.; Li, M.; Chen, K.; Zhou, W.; Luo, Y.; Li, Z.; Wang, L.; Zhao, L.; Teh, K.S.; et al. A Flexible Electrostatic Nanogenerator and Self-Powered Capacitive Sensor Based on Electrospun Polystyrene Mats and Graphene Oxide Films. Nanotechnology 2021, 32, 405402. [Google Scholar] [CrossRef]
- Wu, Q.; Guo, H.; Sun, H.; Liu, X.; Sui, H.; Wang, F. Flexible Piezoelectric Energy Harvesters with Graphene Oxide Nanosheets and PZT-Incorporated P(VDF-TrFE) Matrix for Mechanical Energy Harvesting. Ceram. Int. 2021, 47, 19614–19621. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Li, Y.; Wang, Z.; Wang, W.; An, Q.; Tong, W. Piezoelectric Nanogenerators Based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by In-Situ Reduction. Mater. Today Commun. 2021, 26, 101629. [Google Scholar] [CrossRef]
- Trung, T.Q.; Tien, N.T.; Kim, D.; Jang, M.; Yoon, O.J.; Lee, N.-E. A Flexible Reduced Graphene Oxide Field-Effect Transistor for Ultrasensitive Strain Sensing. Adv. Funct. Mater. 2014, 24, 117–124. [Google Scholar] [CrossRef]
- Huang, Y.; Yin, S.; Huang, Y.; Zhang, X.; Zhang, W.; Jiang, G.; Zhu, H.; Wan, C.; Fu, W. Graphene Oxide/Hexylamine Superlattice Field-Effect Biochemical Sensors. Adv. Funct. Mater. 2021, 31, 2010563. [Google Scholar] [CrossRef]
- Yang, H.; Gong, L.H.; Zheng, Z.; Yao, X.F. Highly Stretchable and Sensitive Conductive Rubber Composites with Tunable Piezoresistivity for Motion Detection and Flexible Electrodes. Carbon 2020, 158, 893–903. [Google Scholar] [CrossRef]
- Qiao, H.; Qin, W.; Chen, J.; Feng, L.; Gu, C.; Yang, M.; Tian, Z.; Chen, J.; Li, X.; Wang, Y.; et al. AuCu Decorated MXene/RGO Aerogels towards Wearable Thermal Management and Pressure Sensing Applications. Mater. Des. 2023, 228, 111814. [Google Scholar] [CrossRef]
- Cheng, R.; Zeng, J.; Wang, B.; Li, J.; Cheng, Z.; Xu, J.; Gao, W.; Chen, K. Ultralight, Flexible and Conductive Silver Nanowire/Nanofibrillated Cellulose Aerogel for Multifunctional Strain Sensor. Chem. Eng. J. 2021, 424, 130565. [Google Scholar] [CrossRef]
- Peng, X.; Wu, K.; Hu, Y.; Zhuo, H.; Chen, Z.; Jing, S.; Liu, Q.; Liu, C.; Zhong, L. A Mechanically Strong and Sensitive CNT/rGO–CNF Carbon Aerogel for Piezoresistive Sensors. J. Mater. Chem. A 2018, 6, 23550–23559. [Google Scholar] [CrossRef]
- Cao, M.; Su, J.; Fan, S.; Qiu, H.; Su, D.; Li, L. Wearable Piezoresistive Pressure Sensors Based on 3D Graphene. Chem. Eng. J. 2021, 406, 126777. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Huang, L.; Li, C.; Hong, J.-D.; Shi, G. Highly Compressible Macroporous Graphene Monoliths via an Improved Hydrothermal Process. Adv. Mater. 2014, 26, 4789–4793. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yue, Y.; Zhang, H.; Cheng, F.; Zhao, W.; Rao, J.; Luo, S.; Wang, J.; Jiang, X.; Liu, Z.; et al. 3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. ACS Nano 2018, 12, 3209–3216. [Google Scholar] [CrossRef]
- Wei, H.; Li, A.; Kong, D.; Li, Z.; Cui, D.; Li, T.; Dong, B.; Guo, Z. Polypyrrole/Reduced Graphene Aerogel Film for Wearable Piezoresisitic Sensors with High Sensing Performances. Adv. Compos. Hybrid Mater. 2021, 4, 86–95. [Google Scholar] [CrossRef]
- Tan, Y.; Ivanov, K.; Mei, Z.; Li, H.; Li, H.; Lubich, L.; Wang, C.; Wang, L. A Soft Wearable and Fully-Textile Piezoresistive Sensor for Plantar Pressure Capturing. Micromachines 2021, 12, 110. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Huang, L.; Li, C.; Shi, G. “Pottery” of Porous Graphene Materials. Adv. Electron. Mater. 2015, 1, 1500004. [Google Scholar] [CrossRef]
- Huang, J.; Zeng, J.; Yan, Z. Multi-Arches Structured All-Carbon Aerogels with Super Elasticity and High Fatigue Resistance as Sensitive Wearable Sensors. Meet. Abstr. 2020, MA2020-01, 1978. [Google Scholar] [CrossRef]
- Moon, D.-B.; Bag, A.; Lee, H.-B.; Meeseepong, M.; Lee, D.-H.; Lee, N.-E. A Stretchable, Room-Temperature Operable, Chemiresistive Gas Sensor Using Nanohybrids of Reduced Graphene Oxide and Zinc Oxide Nanorods. Sens. Actuators B Chem. 2021, 345, 130373. [Google Scholar] [CrossRef]
- Lucchese, M.M.; Stavale, F.; Ferreira, E.H.M.; Vilani, C.; Moutinho, M.V.O.; Capaz, R.B.; Achete, C.A.; Jorio, A. Quantifying Ion-Induced Defects and Raman Relaxation Length in Graphene. Carbon 2010, 48, 1592–1597. [Google Scholar] [CrossRef]
- Tang, X.; Xia, S.; Luo, Q.; Liu, J.; Gong, H.; Deng, Y.; Chen, X.; Shao, J. Hierarchically Porous Graphene Aerogels with Abundant Oxygenated Groups for High-Energy-Density Surpercapacitors. Energy Fuels 2022, 36, 14433–14441. [Google Scholar] [CrossRef]
- Yuanzheng, L.; Youqi, W.; Jiang, H.; Buyin, L. Nanofiber Enhanced Graphene–Elastomer with Unique Biomimetic Hierarchical Structure for Energy Storage and Pressure Sensing. Mater. Des. 2021, 203, 109612. [Google Scholar] [CrossRef]
- Afroze, J.D.; Abden, M.J.; Yuan, Z.; Wang, C.; Wei, L.; Chen, Y.; Tong, L. Core-Shell Structured Graphene Aerogels with Multifunctional Mechanical, Thermal and Electromechanical Properties. Carbon 2020, 162, 365–374. [Google Scholar] [CrossRef]
- Demirci, S.; Can, M.; Sahiner, N. Graphene Aerogels for In Situ Synthesis of Conductive Poly(Para-Phenylenediamine) Polymers, and Their Sensor Application. Micromachines 2020, 11, 626. [Google Scholar] [CrossRef]
- Yousaf, Z.; Smith, M.; Potluri, P.; Parnell, W. Compression Properties of Polymeric Syntactic Foam Composites under Cyclic Loading. Compos. Part B Eng. 2020, 186, 107764. [Google Scholar] [CrossRef]
- Shen, Y.; Golnaraghi, F.; Plumtree, A. Modelling Compressive Cyclic Stress–Strain Behaviour of Structural Foam. Int. J. Fatigue 2001, 23, 491–497. [Google Scholar] [CrossRef]
- Patterson, B.M.; Cordes, N.L.; Henderson, K.; Williams, J.J.; Stannard, T.; Singh, S.S.; Ovejero, A.R.; Xiao, X.; Robinson, M.; Chawla, N. In Situ X-Ray Synchrotron Tomographic Imaging during the Compression of Hyper-Elastic Polymeric Materials. J. Mater. Sci. 2016, 51, 171–187. [Google Scholar] [CrossRef]
- Meijer, H.E.H.; Govaert, L.E. Mechanical Performance of Polymer Systems: The Relation between Structure and Properties. Prog. Polym. Sci. 2005, 30, 915–938. [Google Scholar] [CrossRef]
- Kong, H.; Song, Z.; Li, W.; Bao, Y.; Qu, D.; Ma, Y.; Liu, Z.; Wang, W.; Wang, Z.; Han, D.; et al. Skin-Inspired Hair–Epidermis–Dermis Hierarchical Structures for Electronic Skin Sensors with High Sensitivity over a Wide Linear Range. ACS Nano 2021, 15, 16218–16227. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, W.; Kong, H.; Chen, M.; Bao, Y.; Wang, N.; Wang, W.; Liu, Z.; Ma, Y.; He, Y.; et al. Merkel Receptor-Inspired Integratable and Biocompatible Pressure Sensor with Linear and Ultrahigh Sensitive Response for Versatile Applications. Chem. Eng. J. 2022, 444, 136481. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Chen, H.; Wang, Y.; Zhuo, Q.; Liu, Y.; Li, Y.; Dong, H.; Li, S.; Tan, L.; Tan, J.; et al. Preparation of Elastic Macroporous Graphene Aerogel Based on Pickering Emulsion Method and Combination with ETPU for High Performance Piezoresistive Sensors. Micromachines 2023, 14, 1904. https://doi.org/10.3390/mi14101904
Zhao W, Chen H, Wang Y, Zhuo Q, Liu Y, Li Y, Dong H, Li S, Tan L, Tan J, et al. Preparation of Elastic Macroporous Graphene Aerogel Based on Pickering Emulsion Method and Combination with ETPU for High Performance Piezoresistive Sensors. Micromachines. 2023; 14(10):1904. https://doi.org/10.3390/mi14101904
Chicago/Turabian StyleZhao, Wei, Hao Chen, Yuqi Wang, Qing Zhuo, Yaopeng Liu, Yuanyuan Li, Hangyu Dong, Shidong Li, Linli Tan, Jianfeng Tan, and et al. 2023. "Preparation of Elastic Macroporous Graphene Aerogel Based on Pickering Emulsion Method and Combination with ETPU for High Performance Piezoresistive Sensors" Micromachines 14, no. 10: 1904. https://doi.org/10.3390/mi14101904
APA StyleZhao, W., Chen, H., Wang, Y., Zhuo, Q., Liu, Y., Li, Y., Dong, H., Li, S., Tan, L., Tan, J., Liu, Z., & Li, Y. (2023). Preparation of Elastic Macroporous Graphene Aerogel Based on Pickering Emulsion Method and Combination with ETPU for High Performance Piezoresistive Sensors. Micromachines, 14(10), 1904. https://doi.org/10.3390/mi14101904