Facile Synthesis of Microsphere-like Co0.85Se Structures on Nickel Foam for a Highly Efficient Hydrogen Evolution Reaction
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Synthesis of Co(OH)F Microcrystals on Ni-Foam
2.3. Conversion of Co(OH)F to Co0.85Se Microcrystals
2.4. Materials Characterization
2.5. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 414, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A. Sustainable hydrogen production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef] [PubMed]
- Dubouis, N.; Grimaud, A. The hydrogen evolution reaction: From material to interfacial descriptors. Chem. Sci. 2019, 10, 9165–9181. [Google Scholar] [CrossRef] [PubMed]
- Morales-Guio, C.G.; Stern, L.-A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569. [Google Scholar] [CrossRef]
- Ferriday, T.B.; Middleton, P.H.; Kolhe, M.L. Review of the hydrogen evolution reaction—A basic approach. Energies 2021, 14, 8535. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, E.; Sun, G. Layered transition-metal hydroxides for alkaline hydrogen evolution reaction. Chin. J. Catal. 2020, 41, 574–591. [Google Scholar] [CrossRef]
- Shiraz, H.G.; Crispin, X.; Berggren, M. Transition metal sulfides for electrochemical hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 24060–24077. [Google Scholar] [CrossRef]
- Feng, W.; Pang, W.; Xu, Y.; Guo, A.; Gao, X.; Qiu, X.; Chen, W. Transition metal selenides for electrocatalytic hydrogen evolution reaction. ChemElectroChem 2020, 7, 31–54. [Google Scholar] [CrossRef]
- Du, H.; Kong, R.-M.; Guo, X.; Qu, F.; Li, J. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale 2018, 10, 21617–21624. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Lee, S.J.; Murthy, A.P.; Madhavan, J.; Choi, M.Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100805. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Zhang, H.; Ma, J.; Huang, Z.; Li, J.; Wang, Y. Transition-metal carbides as hydrogen evolution reduction electrocatalysts: Synthetic methods and optimization strategies. Chem. Eur. J. 2021, 27, 5074–5090. [Google Scholar] [CrossRef]
- Zhai, L.; Lo, T.W.B.; Xu, Z.-L.; Potter, J.; Mo, J.; Guo, X.; Tang, C.C.; Tsang, S.C.D.; Lau, S.P. In situ phase transformation on nickel-based selenides for enhanced hydrogen evolution reaction in alkaline medium. ACS Energy Lett. 2020, 5, 2483–2491. [Google Scholar] [CrossRef]
- Sun, J.; Li, J.; Li, Z.; Hu, X.; Bai, H.; Meng, X. Phase transition in cobalt selenide with a greatly improved electrocatalytic activity in hydrogen evolution reactions. ACS Sustain. Chem. Eng. 2022, 10, 4022–4030. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Deng, S.; Shen, S.; Zhang, Y.; Pan, G.; Xiong, Q.; Liu, Q.; Xia, X.; Wang, X.; et al. Molybdenum selenide electrocatalysts for electrochemical hydrogen evolution reaction. ChemElectroChem 2019, 6, 3530–3548. [Google Scholar] [CrossRef]
- Pan, S.; Ma, S.; Chang, C.; Long, X.; Qu, K.; Yang, Z. Activation of rhodium selenides for boosted hydrogen evolution reaction via heterostructure construction. Mater. Today Phys. 2021, 18, 100401. [Google Scholar] [CrossRef]
- Aslan, E.; Sarilmaz, A.; Yanalak, G.; Ozel, S.S.; Ozel, F.; Patir, I.H. Transition metal-incorporated tungsten-based ternary refractory metal selenides (MWSex; M = Fe, Co, Ni, and Mn) as hydrogen evolution catalysts at soft interfaces. Mater. Today Energy 2020, 18, 100510. [Google Scholar] [CrossRef]
- Wan, S.; Jin, W.; Guo, X.; Mao, J.; Zheng, L.; Zhao, J.; Zhang, J.; Liu, H.; Tang, C. Self-templating construction of porous CoSe2 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting. ACS Sustain. Chem. Eng. 2018, 6, 15374–15382. [Google Scholar] [CrossRef]
- Thangasamy, P.; He, R.; Randriamahazaka, H.; Chen, X.; Zhang, Y.; Luo, H.; Wang, H.; Zhou, M. Collectively exhaustive electrochemical hydrogen evolution reaction of polymorphic cobalt selenides derived from organic surfactants modified Co-MOFs. Appl. Catal. B Environ. 2023, 325, 122367. [Google Scholar] [CrossRef]
- Hussain, N.; Wu, F.; Xu, L.; Qian, Y. Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. Nano Res. 2019, 12, 2941–2946. [Google Scholar] [CrossRef]
- Han, Y.; Chen, X.; Qian, C.; Zhang, X.; He, W.; Ren, H.; Li, H.; Diao, G.; Chen, M. Co0.85Se nanoparticles armored by N-doped carbon layer with electronic structure regulation functions: An efficient oxygen evolution electrocatalyst. Chem. Eng. J. 2021, 420, 130461. [Google Scholar] [CrossRef]
- Lan, K.; Li, J.; Zhu, Y.; Gong, L.; Li, F.; Jiang, P.; Niu, F.; Li, R. Morphology engineering of CoSe2 as efficient electrocatalyst for water splitting. J. Colloid Interface Sci. 2019, 539, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Lin, Z.; Song, K.; Wang, Z.; Huang, L.; Yan, L.; Meng, F.; Zhang, Q.; Gu, L.; Zhong, W. Reversed active sites boost the intrinsic activity of graphene-like cobalt selenide for hydrogen evolution. Angew. Chem. Int. Ed. 2021, 60, 12360–12365. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; He, H.; Xu, C.; Zhang, M.; Feng, H.; Yang, L.; Jiang, Q.; Huang, H. Ultrafine cobalt selenide nanowires tangled with MXene nanosheets as highly efficient electrocatalysts toward the hydrogen evolution reaction. Dalton Trans. 2022, 51, 7135–7141. [Google Scholar] [CrossRef]
- Niu, S.; Jiang, W.-J.; Wei, Z.; Tang, T.; Ma, J.; Hu, J.-S.; Wan, L.-J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013. [Google Scholar] [CrossRef]
- Rajesh, J.A.; Park, J.-Y.; Kang, S.-H.; Ahn, K.-S. Effect of molar concentration on the crystallite structures and electrochemical properties of cobalt fluoride hydroxide for hybrid supercapacitors. Electrochim. Acta 2022, 414, 140203. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, X.; Ma, X.; Li, L.; Sun, P.; Zhang, M. Asymmetric supercapacitors with excellent rate performance by integrating Co(OH)F nanorods and layered Ti3C2Tx paper. RSC Adv. 2019, 9, 30957–30963. [Google Scholar] [CrossRef]
- Alam, S.; Sahu, T.K.; Qureshi, M. One-dimensional Co(OH)F as a noble metal-free redox mediator and hole extractor for boosted photoelectrochemical water oxidation in worm-like bismuth vanadate. ACS Sustain. Chem. Eng. 2021, 9, 5155–5165. [Google Scholar] [CrossRef]
- Zhao, X.; Li, X.; Zhao, Y.; Su, Z.; Zhang, Y.; Wang, R. Facile synthesis of Tremelliform Co0.85Se nanosheets for supercapacitor. J. Alloys Compd. 2017, 697, 124–131. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, Z.; Hu, Z.; Xi, L.; Ji, X.; Liu, Y. 3D interconnected ultrathin cobalt selenide nanosheets as cathode materials for hybrid supercapacitors. Electrochim. Acta 2018, 269, 30–37. [Google Scholar] [CrossRef]
- Liao, M.; Zeng, G.; Luo, T.; Jin, Z.; Wang, Y.; Kou, X.; Xiao, D. Three-dimensional coral-like cobalt selenide as an advanced electrocatalyst for highly efficient oxygen evolution reaction. Electrochim. Acta 2016, 194, 59–66. [Google Scholar] [CrossRef]
- Rajesh, J.A.; Kang, S.-H.; Ahn, K.-S. Nickel-foam supported cobalt fluoride hydroxide crystallites as an efficient and durable electrocatalyst for oxygen evolution reaction. Mater. Lett. 2022, 308, 131207. [Google Scholar] [CrossRef]
- Mondal, A.; Lee, C.-Y.; Chang, H.; Hasin, P.; Yang, C.-R.; Lin, J.-Y. Electrodeposited Co0.85Se thin films as free-standing cathode materials for high-performance hybrid supercapacitors. J. Taiwan Inst. Chem. Eng. 2021, 121, 205–216. [Google Scholar] [CrossRef]
- Masud, J.; Swesi, A.T.; Liyanage, W.P.R.; Nath, M. Cobalt selenide nanostructures: An efficient bifunctional catalyst with high current density at low coverage. ACS Appl. Mater. Interfaces 2016, 8, 17292–17302. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Qin, J.; Wang, S.; Zhao, D.; Mao, B.; Cao, M. In situ coupling of Co0.85Se and N-doped carbon via one-step selenization of metal–organic frameworks as a trifunctional catalyst for overall water splitting and Zn–air batteries. J. Mater. Chem. A 2017, 5, 7001–7014. [Google Scholar] [CrossRef]
- Yue, H.; Yu, B.; Qi, F.; Zhou, J.; Wang, X.; Zheng, B.; Zhang, W.; Li, Y.; Chen, Y. Interwoven CoSe2/CNTs hybrid as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2017, 253, 200–207. [Google Scholar] [CrossRef]
- Ming, F.; Liang, H.; Shi, H.; Mei, G.; Xu, X.; Wang, Z. Hierarchical (Ni,Co)Se2/carbon hollow rhombic dodecahedra derived from metal-organic frameworks for efficient water-splitting electrocatalysis. Electrochim. Acta 2017, 250, 167–173. [Google Scholar] [CrossRef]
- Zhao, G.; Li, P.; Rui, K.; Chen, Y.; Dou, S.X.; Sun, W. CoSe2/MoSe2 heterostructures with enriched water adsorption/dissociation sites towards enhanced alkaline hydrogen evolution reaction. Chem. Eur. J. 2018, 24, 11158–11165. [Google Scholar] [CrossRef]
- Fang, X.-J.; Ren, L.-P.; Li, F.; Jiang, Z.-X.; Wang, Z.-G. Modulating electronic structure of CoSe2 by Ni doping for efficient electrocatalyst for hydrogen evolution reaction. Rare Met. 2022, 41, 901–910. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, D.; Hu, L.; Liu, H.; Li, Y.; Xue, Y.; Liu, F.; Zhang, J.; Tang, C. Boron-doped CoSe2 nanowires as high-efficient electrocatalyst for hydrogen evolution reaction. Colloids Surf. A Physicochem. Eng. Asp. 2022, 646, 128903. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Huang, S.; Ning, P.; Wu, Y.; Gao, C.; Le, T.-T.; Zai, J.; Jiang, Y.; Hu, Z.; et al. Well-defined CoSe2@MoSe2 hollow heterostructured nanocubes with enhanced dissociation kinetics for overall water splitting. Nanoscale 2020, 12, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, B.; Yu, B.; Wang, B.; Hou, W.; Zhang, W.; Chen, Y. In situ synthesis of hierarchical MoSe2–CoSe2 nanotubes as an efficient electrocatalyst for the hydrogen evolution reaction in both acidic and alkaline media. J. Mater. Chem. A 2018, 6, 7842–7850. [Google Scholar] [CrossRef]
- Xiao, B.B.; Huang, Q.Y.; Wu, J.; Song, E.H.; Jiang, Q. Tetragonal transition metal selenide for hydrogen evolution. Appl. Surf. Sci. 2022, 591, 153249. [Google Scholar] [CrossRef]
- Zhu, J.; Lu, Y.; Zheng, X.; Xu, S.; Sun, S.; Liu, Y.; Li, D.; Jiang, D. Heterostructure arrays of (Ni,Co)Se2 nanowires integrated with MOFs-derived CoSe2 dodecahedra for synergistically high-efficiency and stable overall water splitting. Appl. Surf. Sci. 2022, 592, 153352. [Google Scholar] [CrossRef]
- Zhao, Y.; Jin, B.; Zheng, Y.; Jin, H.; Jiao, Y.; Qiao, S.-Z. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv. Energy Mater. 2018, 8, 1801926. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, F.; Ke, N.; Dong, B.; Huang, A.; Tan, C.; Yin, L.; Xu, X.; Hao, L.; Xian, Y.; et al. Self-supported cobalt/cobalt selenide heterojunction for highly efficient overall water splitting. J. Alloys Compd. 2022, 925, 166683. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajesh, J.A.; Kim, J.-Y.; Kang, S.-H.; Ahn, K.-S. Facile Synthesis of Microsphere-like Co0.85Se Structures on Nickel Foam for a Highly Efficient Hydrogen Evolution Reaction. Micromachines 2023, 14, 1905. https://doi.org/10.3390/mi14101905
Rajesh JA, Kim J-Y, Kang S-H, Ahn K-S. Facile Synthesis of Microsphere-like Co0.85Se Structures on Nickel Foam for a Highly Efficient Hydrogen Evolution Reaction. Micromachines. 2023; 14(10):1905. https://doi.org/10.3390/mi14101905
Chicago/Turabian StyleRajesh, John Anthuvan, Jae-Young Kim, Soon-Hyung Kang, and Kwang-Soon Ahn. 2023. "Facile Synthesis of Microsphere-like Co0.85Se Structures on Nickel Foam for a Highly Efficient Hydrogen Evolution Reaction" Micromachines 14, no. 10: 1905. https://doi.org/10.3390/mi14101905
APA StyleRajesh, J. A., Kim, J. -Y., Kang, S. -H., & Ahn, K. -S. (2023). Facile Synthesis of Microsphere-like Co0.85Se Structures on Nickel Foam for a Highly Efficient Hydrogen Evolution Reaction. Micromachines, 14(10), 1905. https://doi.org/10.3390/mi14101905