Electric Field Effects on Curved Graphene Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Curvature Energy
3.2. Electric Dipole Moment
3.3. Regeneration Times
3.3.1. Classical Time
3.3.2. Revival Time
3.3.3. Electronic Spectrum
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DFT | Density Functional Theory |
GGA | Generalised Gradient Approximation |
LDA | Local Density Approximation |
LUMO | Lower Unoccupied Molecular Orbital |
References
- Cao, C.F.; Yu, B.; Guo, B.F.; Hu, W.J.; Sun, F.N.; Zhang, Z.H.; Li, S.N.; Wu, W.; Tang, L.C.; Song, P.; et al. Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chem. Eng. J. 2022, 439, 134516. [Google Scholar] [CrossRef]
- Chen, B.; Ding, J.; Bai, X.; Zhang, H.; Liang, M.; Zhu, S.; Shi, C.; Ma, L.; Liu, E.; Zhao, N.; et al. Engineering Pocket-Like Graphene–Shell Encapsulated FeS2: Inhibiting Polysulfides Shuttle Effect in Potassium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2109899. [Google Scholar] [CrossRef]
- Su, M.; Han, G.; Gao, J.; Feng, Y.; He, C.; Ma, J.; Liu, C.; Shen, C. Carbon welding on graphene skeleton for phase change composites with high thermal conductivity for solar-to-heat conversion. Chem. Eng. J. 2022, 427, 131665. [Google Scholar] [CrossRef]
- Baskakov, S.A.; Baskakova, Y.V.; Kabachkov, E.N.; Dvoretskaya, E.V.; Krasnikova, S.S.; Korepanov, V.I.; Michtchenko, A.; Shulga, Y.M. On the State of Graphene Oxide Nanosheet in a Polyurethane Matrix. Nanomaterials 2023, 13, 553. [Google Scholar] [CrossRef]
- Lee, K.; Lim, J.; Lee, M.J.; Ryu, K.; Lee, H.; Kim, J.Y.; Ju, H.; Cho, H.S.; Kim, B.H.; Hatzell, M.C.; et al. Structure-controlled graphene electrocatalysts for high-performance H2O2 production. Energy Environ. Sci. 2022, 15, 2858–2866. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Jung, E.; Mok, D.H.; Paidi, V.K.; Lee, J.; Lee, H.S.; Jeoun, Y.; Ko, W.; Shin, H.; et al. Atomic Structure Modification of Fe–N–C Catalysts via Morphology Engineering of Graphene for Enhanced Conversion Kinetics of Lithium–Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2110857. [Google Scholar] [CrossRef]
- Vasseghian, Y.; Le, V.T.; Joo, S.W.; Dragoi, E.N.; Kamyab, H.; Chelliapan, S.; Klemeš, J.J. Spotlighting graphene-based catalysts for the mitigation of environmentally hazardous pollutants to cleaner production: A review. J. Clean. Prod. 2022, 365, 132702. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, D.; Lv, P.; He, B.; Li, X.; Ma, D.; Jia, Y. Theoretical insights into the electroreduction of nitrate to ammonia on graphene-based single-atom catalysts. Nanoscale 2022, 14, 10862–10872. [Google Scholar] [CrossRef]
- Afifi, M.; El-Naggar, M.E.; Muhammad, S.; Alghamdi, N.; Wageh, S.; Abou Taleb, M.F.; Mostafa, M.S.; Salem, S.; El-Tantawy, I. Compositional Adjusting and Antibacterial Improvement of Hydroxyapatite/Nb2O5/Graphene Oxide for Medical Applications. J. Inorg. Organomet. Polym. Mater. 2022, 32, 2160–2172. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Saebfar, H.; Gholami, M.H.; Hushmandi, K.; Zabolian, A.; Bikarannejad, P.; Hashemi, M.; Daneshi, S.; Mirzaei, S.; Sharifi, E.; et al. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin. Drug Deliv. 2022, 19, 355–382. [Google Scholar] [CrossRef]
- Biru, E.I.; Necolau, M.I.; Zainea, A.; Iovu, H. Graphene Oxide–Protein-Based Scaffolds for Tissue Engineering: Recent Advances and Applications. Polymers 2022, 14, 1032. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Hashemi, S.A.; Kalashgrani, M.Y.; Omidifar, N.; Bahrani, S.; Vijayakameswara Rao, N.; Babapoor, A.; Gholami, A.; Chiang, W.H. Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers 2022, 14, 617. [Google Scholar] [CrossRef] [PubMed]
- Srimaneepong, V.; Skallevold, H.E.; Khurshid, Z.; Zafar, M.S.; Rokaya, D.; Sapkota, J. Graphene for Antimicrobial and Coating Application. Int. J. Mol. Sci. 2022, 23, 499. [Google Scholar] [CrossRef] [PubMed]
- Purwidyantri, A.; Ipatov, A.; Domingues, T.; Borme, J.; Martins, M.; Alpuim, P.; Prado, M. Programmable graphene-based microfluidic sensor for DNA detection. Sens. Actuators B Chem. 2022, 367, 132044. [Google Scholar] [CrossRef]
- Shangguan, Q.; Chen, Z.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Wu, X.; Wang, S.; Yi, Y.; Wu, P. Design of Ultra-Narrow Band Graphene Refractive Index Sensor. Sensors 2022, 22, 6483. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y.; Gao, J.; Nag, A.; Rahaman, A. Integration of Different Graphene Nanostructures with PDMS to Form Wearable Sensors. Nanomaterials 2022, 12, 950. [Google Scholar] [CrossRef]
- Tang, B.; Guo, Z.; Jin, G. Polarization-controlled and symmetry-dependent multiple plasmon-induced transparency in graphene-based metasurfaces. Opt. Express 2022, 30, 35554–35566. [Google Scholar] [CrossRef]
- Ye, Z.; Wu, P.; Wang, H.; Jiang, S.; Huang, M.; Lei, D.; Wu, F. Multimode tunable terahertz absorber based on a quarter graphene disk structure. Results Phys. 2023, 48, 106420. [Google Scholar] [CrossRef]
- Lai, R.; Shi, P.; Yi, Z.; Li, H.; Yi, Y. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene. Micromachines 2023, 14, 953. [Google Scholar] [CrossRef]
- Wei, J.; Zang, Z.; Zhang, Y.; Wang, M.; Du, J.; Tang, X. Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt. Lett. 2017, 42, 911–914. [Google Scholar] [CrossRef]
- Hu, Y.; Yao, H.; Liao, Q.; Lin, T.; Cheng, H.; Qu, L. The promising solar-powered water purification based on graphene functional architectures. EcoMat 2022, 4, e12205. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, H.; Liu, N.; Lei, D.; Zhang, Q.; Su, T.; Wang, L.; Su, J.; Gao, Y. Self-powered 2D nanofluidic graphene pressure sensor with Serosa-Mimetic structure. EcoMat 2023, 5, e12299. [Google Scholar] [CrossRef]
- Liu, J.B.; Gong, H.S.; Ye, G.L.; Fei, H.L. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022, 41, 1703–1726. [Google Scholar] [CrossRef]
- Yang, L.; Su, Q.; Si, B.; Zhang, Y.; Zhang, Y.; Yang, H.; Zhou, X. Enhancing bioenergy production with carbon capture of microalgae by ultraviolet spectrum conversion via graphene oxide quantum dots. Chem. Eng. J. 2022, 429, 132230. [Google Scholar] [CrossRef]
- Yang, P.; Yang, X.; Liu, W.; Guo, R.; Yao, Z. Graphene-based electrocatalysts for advanced energy conversion. Green Energy Environ. 2022, 8, 1265–1278. [Google Scholar] [CrossRef]
- Wallace, P.R. The Band Theory of Graphite. Phys. Rev. 1947, 71, 622–634. [Google Scholar] [CrossRef]
- Katsnelson, M.I.; Geim, A.K. Electron scattering on microscopic corrugations in graphene. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 195–204. [Google Scholar] [CrossRef]
- Bolotin, K.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef]
- Ishigami, M.; Chen, J.H.; Cullen, W.G.; Fuhrer, M.S.; Williams, E.D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Borunda, M.F.; Hennig, H.; Heller, E.J. Ballistic versus diffusive transport in graphene. Phys. Rev. B 2013, 88, 125415. [Google Scholar] [CrossRef]
- Chu, Z.; He, L. Origin of room-temperature single-channel ballistic transport in zigzag graphene nanoribbons. Sci. China Mater. 2015, 58, 677–682. [Google Scholar] [CrossRef]
- Katsnelson, M.I.; Novoselov, K.S.; Geim, A.K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625. [Google Scholar] [CrossRef]
- Bai, C.; Zhang, X. Klein paradox and resonant tunneling in a graphene superlattice. Phys. Rev. B 2007, 76, 075430. [Google Scholar] [CrossRef]
- Van Duppen, B.; Peeters, F.M. Klein paradox for a pn junction in multilayer graphene. Europhys. Lett. 2013, 102, 27001. [Google Scholar] [CrossRef]
- Breit, G. An Interpretation of Dirac’s Theory of the Electron. Proc. Natl. Acad. Sci. USA 1928, 14, 553–559. [Google Scholar] [CrossRef]
- Schrödinger, E. Über die kräftefreie Bewegung in der Relativistischen Quantenmechanik; Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse: Berlin, Germany, 1930; pp. 418–428. [Google Scholar]
- Rusin, T.M.; Zawadzki, W. Theory of electron Zitterbewegung in graphene probed by femtosecond laser pulses. Phys. Rev. B-Condens. Matter Mater. Phys. 2009, 80, 045416. [Google Scholar] [CrossRef]
- Zawadzki, W.; Rusin, T.M. Zitterbewegung (trembling motion) of electrons in semiconductors: A review. J. Phys. Condens. Matter 2011, 23, 143201. [Google Scholar] [CrossRef]
- Iorio, A. Graphene: QFT in curved spacetimes close to experiments. J. Phys. Conf. Ser. 2013, 442, 012056. [Google Scholar] [CrossRef]
- Iorio, A.; Lambiase, G. Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that. Phys. Rev. D 2014, 90, 025006. [Google Scholar] [CrossRef]
- Iorio, A. Curved spacetimes and curved graphene: A status report of the Weyl symmetry approach. Int. J. Mod. Phys. D 2015, 24, 1530013. [Google Scholar] [CrossRef]
- Gallerati, A. Negative-curvature spacetime solutions for graphene. J. Phys. Condens. Matter 2021, 33, 135501. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Obeng, Y.; Srinivasan, P. Graphene: Is it the future for semiconductors? An overview of the material, devices, and applications. Electrochem. Soc. Interface 2011, 20, 47–52. [Google Scholar] [CrossRef]
- Lone, S.; Bhardwaj, A.; Pandit, A.K.; Gupta, S.; Mahajan, S. A Review of Graphene Nanoribbon Field-Effect Transistor Structures. J. Electron. Mater. 2021, 50, 3169–3186. [Google Scholar] [CrossRef]
- Briggs, B.D.; Nagabhirava, B.; Rao, G.; Geer, R.; Gao, H.; Xu, Y.; Yu, B. Electromechanical robustness of monolayer graphene with extreme bending. Appl. Phys. Lett. 2010, 97, 223102. [Google Scholar] [CrossRef]
- Li, X.; Lau, S.P.; Tang, L.; Ji, R.; Yang, P. Multicolour light emission from chlorine-doped graphene quantum dots. J. Mater. Chem. C 2013, 1, 7308. [Google Scholar] [CrossRef]
- Jo, J.W.; Lee, J.U.; Jo, W.H. Graphene-based electrodes for flexible electronics. Polym. Int. 2015, 64, 1676–1684. [Google Scholar] [CrossRef]
- Wang, Z.; Philippe, L.; Elias, J. Deflection of suspended graphene by a transverse electric field. Phys. Rev. B-Condens. Matter Mater. Phys. 2010, 81, 155405. [Google Scholar] [CrossRef]
- Georgiou, T.; Britnell, L.; Blake, P.; Gorbachev, R.V.; Gholinia, A.; Geim, A.K.; Casiraghi, C.; Novoselov, K.S. Graphene bubbles with controllable curvature. Appl. Phys. Lett. 2011, 99, 2011–2014. [Google Scholar] [CrossRef]
- Osváth, Z.; Lefloch, F.; Bouchiat, V.; Chapelier, C. Electric field-controlled rippling of graphene. Nanoscale 2013, 5, 10996. [Google Scholar] [CrossRef] [PubMed]
- Mangum, J.M.; Harerimana, F.; Gikunda, M.N.; Thibado, P.M. Mechanisms of spontaneous curvature inversion in compressed graphene ripples for energy harvesting applications via molecular dynamics simulations. Membranes 2021, 11, 516. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 2007, 143, 101–109. [Google Scholar] [CrossRef]
- Fasolino, A.; Los, J.H.; Katsnelson, M.I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, J.M. Graphene: Buckle or break. Nat. Mater. 2007, 6, 801–802. [Google Scholar] [CrossRef]
- Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212. [Google Scholar] [CrossRef]
- Ramezani Masir, M.; Moldovan, D.; Peeters, F. Pseudo magnetic field in strained graphene: Revisited. Solid State Commun. 2013, 175–176, 76–82. [Google Scholar] [CrossRef]
- Kang, D.H.; Sun, H.; Luo, M.; Lu, K.; Chen, M.; Kim, Y.; Jung, Y.; Gao, X.; Parluhutan, S.J.; Ge, J.; et al. Pseudo-magnetic field-induced slow carrier dynamics in periodically strained graphene. Nat. Commun. 2021, 12, 5087. [Google Scholar] [CrossRef]
- Park, H.C.; Han, J.; Myoung, N. A strain-engineered graphene qubit in a nanobubble. Quantum Sci. Technol. 2023, 8, 025012. [Google Scholar] [CrossRef]
- De-la Huerta-Sainz, S.; Ballesteros, A.; Cordero, N.A. Quantum Revivals in Curved Graphene Nanoflakes. Nanomaterials 2022, 12, 1953. [Google Scholar] [CrossRef] [PubMed]
- De-la Huerta-Sainz, S.; Ballesteros, A.; Cordero, N.A. Gaussian Curvature Effects on Graphene Quantum Dots. Nanomaterials 2023, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2016.
- Girifalco, L.A.; Hodak, M. Van der Waals binding energies in graphitic structures. Phys. Rev. B 2002, 65, 125404. [Google Scholar] [CrossRef]
- Hod, O. Graphite and hexagonal boron-nitride have the same interlayer distance. Why? J. Chem. Theory Comput. 2012, 8, 1360–1369. [Google Scholar] [CrossRef]
- Khantha, M.; Cordero, N.A.; Molina, L.M.; Alonso, J.A.; Girifalco, L.A. Interaction of lithium with graphene: An ab initio study. Phys. Rev. B 2004, 70, 125422. [Google Scholar] [CrossRef]
- Cordero, N.A.; Alonso, J.A. The interaction of sulfuric acid with graphene and formation of adsorbed crystals. Nanotechnology 2007, 18, 485705. [Google Scholar] [CrossRef]
- Khantha, M.; Cordero, N.A.; Alonso, J.A.; Cawkwell, M.; Girifalco, L.A. Interaction and concerted diffusion of lithium in a (5,5) carbon nanotube. Phys. Rev. B 2008, 78, 115430. [Google Scholar] [CrossRef]
- Cordero, N.A.; Alonso, J.A. Interaction of Surfactants Containing a Sulfuric Group with a (5,5) Carbon Nanotube. J. Phys. Chem. C 2010, 114, 17249–17256. [Google Scholar] [CrossRef]
- Ayala, I.G.; Cordero, N.A.; Alonso, J.A. Surfactant effect of sulfuric acid on the exfoliation of bilayer graphene. Phys. Rev. B 2011, 84, 165424. [Google Scholar] [CrossRef]
- Ayala, I.G.; Cordero, N.A. Interaction of sodium bisulfate with mono- and bi-layer graphene. J. Nanoparticle Res. 2012, 14, 1071. [Google Scholar] [CrossRef]
- Uchida, K.; Furuya, S.; Iwata, J.I.; Oshiyama, A. Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes. Phys. Rev. B 2014, 90, 155451. [Google Scholar] [CrossRef]
- López-Carballeira, D.; Polcar, T. Ab initio description of nanodiamonds: A DFT and TDDFT benchmark. Diam. Relat. Mater. 2020, 108, 107959. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Banszerus, L.; Janssen, H.; Otto, M.; Epping, A.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Neumaier, D.; Stampfer, C. Identifying suitable substrates for high-quality graphene-based heterostructures. 2D Mater. 2017, 4, 025030. [Google Scholar] [CrossRef]
- Martini, L.; Mišeikis, V.; Esteban, D.; Azpeitia, J.; Pezzini, S.; Paletti, P.; Ochapski, M.W.; Convertino, D.; Hernandez, M.G.; Jimenez, I.; et al. Scalable High-Mobility Graphene/hBN Heterostructures. ACS Appl. Mater. Interfaces 2023, 15, 37794–37801. [Google Scholar] [CrossRef]
- Pokropivny, V.V.; Skorokhod, V.V.; Oleinik, G.S.; Kurdyumov, A.V.; Bartnitskaya, T.S.; Pokropivny, A.V.; Sisonyuk, A.G.; Sheichenko, D.M. Boron Nitride Analogs of Fullerenes (the Fulborenes), Nanotubes, and Fullerites (the Fulborenites). J. Solid State Chem. 2000, 154, 214–222. [Google Scholar] [CrossRef]
- Batista, R.J.; Mazzoni, M.S.; Chacham, H. A theoretical study of the stability trends of boron nitride fullerenes. Chem. Phys. Lett. 2006, 421, 246–250. [Google Scholar] [CrossRef]
- Chkhartishvili, L. Boron nitride nanosystems of regular geometry. J. Phys. Conf. Ser. 2009, 176, 012014. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 6; Semichem Inc.: Shawnee Mission, KS, USA, 2016.
- Lenosky, T.; Gonze, X.; Teter, M.; Elser, V. Energetics of negatively curved graphitic carbon. Nature 1992, 355, 333–335. [Google Scholar] [CrossRef]
- Kim, E.A.; Castro Neto, A.H. Graphene as an electronic membrane. Europhys. Lett. 2008, 84, 57007. [Google Scholar] [CrossRef]
- Robinett, R.W. Quantum wave packet revivals. Phys. Rep. 2004, 392, 1–119. [Google Scholar] [CrossRef]
- Kellett, E.; Jackets, B.; Richards, B. A study of the amplitude of vibration of carbon atoms in the graphite structure. Carbon 1964, 2, 175–183. [Google Scholar] [CrossRef]
- Kelly, B. Thermal vibration amplitudes of carbon atoms in the graphite lattice parallel to the basal planes. J. Nucl. Mater. 1970, 34, 189–192. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de-la-Huerta-Sainz, S.; Ballesteros, A.; Cordero, N.A. Electric Field Effects on Curved Graphene Quantum Dots. Micromachines 2023, 14, 2035. https://doi.org/10.3390/mi14112035
de-la-Huerta-Sainz S, Ballesteros A, Cordero NA. Electric Field Effects on Curved Graphene Quantum Dots. Micromachines. 2023; 14(11):2035. https://doi.org/10.3390/mi14112035
Chicago/Turabian Stylede-la-Huerta-Sainz, Sergio, Angel Ballesteros, and Nicolás A. Cordero. 2023. "Electric Field Effects on Curved Graphene Quantum Dots" Micromachines 14, no. 11: 2035. https://doi.org/10.3390/mi14112035
APA Stylede-la-Huerta-Sainz, S., Ballesteros, A., & Cordero, N. A. (2023). Electric Field Effects on Curved Graphene Quantum Dots. Micromachines, 14(11), 2035. https://doi.org/10.3390/mi14112035