New Insights into Improving the Photovoltaic Performance of Dye-Sensitized Solar Cells by Removing Platinum from the Counter Electrode Using a Graphene-MoS2 Composite or Hybrid
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. X-ray Diffraction
2.3. FESEM Analysis
2.4. Electrochemical and Density Functional Theory (DFT) and Cyclic Voltammetry Study
2.5. Solar Cell Assembly
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omar, A.; Ali, M.S.; Abd Rahim, N. Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Sol. Energy 2020, 207, 1088–1121. [Google Scholar] [CrossRef]
- Duarte, D.A.; Massi, M.; Da Silva Sobrinho, A.S. Development of dye-sensitized solar cells with sputtered N-Doped TiO2 thin films: From modeling the growth mechanism of the films to fabrication of the solar cells. Int. J. Photoenergy 2014, 2014, 839757. [Google Scholar] [CrossRef]
- Korshunov, V.M.; Chmovzh, T.N.; Chkhetiani, G.R.; Taydakov, I.V.; Rakitin, O.A. New D–A–D luminophores of the [1,2,5]thiadiazolo[3,4-d]pyridazine series. Mendeleev Commun. 2022, 32, 371–373. [Google Scholar] [CrossRef]
- Badawi, A.; Althobaiti, M.G.; Alharthi, S.S.; Al-Baradi, A.M. Tailoring the optical properties of CdO nanostructures via barium doping for optical windows applications. Phys. Lett. A 2021, 411, 127553. [Google Scholar] [CrossRef]
- Ghomashi, R.; Rabiei, M.; Ghomashi, S.; Reza Massah, A.; Kolahdoozan, M.; Hosseinnezhad, M.; Ebrahimi-Kahrizsangi, R.; Palevicius, A.; Nasiri, S.; Janusas, G. Synthesis and investigation of the theoretical and experimental optical properties of some novel azo pyrazole sulfonamide hybrids. Mater. Lett. 2022, 317, 132132. [Google Scholar] [CrossRef]
- Ishikawa, K.; Garskaite, E.; Kareiva, A. Sol-gel synthesis of calcium phosphate-based biomaterials-A review of environmentally benign, simple, and effective synthesis routes. J. Sol-Gel Sci. Technol. 2020, 94, 551–572. [Google Scholar] [CrossRef]
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef] [PubMed]
- Hosseinnezhad, M.; Gharanjig, K.; Ghahari, M.; Nasiri, S. Investigation of Photo-electrode and Counter Electrode Effect on DSSCs Based on Indoline Dyes. Prog. Color. Color. Coat. 2023, in press. [Google Scholar]
- Samson Adedoja, O.; Sadiku, E.R.; Hamam, Y. Prospects of Hybrid Conjugated Polymers Loaded Graphene in Electrochemical Energy Storage Applications. J. Inorg. Organomet. Polym. Mater. 2023, 1, 3. [Google Scholar]
- Baskaran, P.; Nisha, K.D.; Harish, S.; Ikeda, H.; Archana, J.; Navaneethan, M. Enhanced catalytic performance of Cu2ZnSnS4/MoS2 nanocomposites based counter electrode for Pt-free dye-sensitized solar cells. J. Alloys Compd. 2022, 894, 162166. [Google Scholar] [CrossRef]
- Sarkar, A.; Bera, S.; Chakraborty, A.K. CoNi2S4-reduced graphene oxide nanohybrid: An excellent counter electrode for Pt-free DSSC. Sol. Energy 2020, 208, 139–149. [Google Scholar] [CrossRef]
- Hosseinnezhad, M.; Moradian, S.; Gharanjig, K.; Afshar Taromi, F. Synthesis and characterisation of eight organic dyes for dye sensitised solar cells. Mater. Technol. 2014, 29, 112–117. [Google Scholar] [CrossRef]
- Mobarhan, G.; Zolriasatein, A.; Ghahari, M.; Jalili, M.; Rostami, M. The enhancement of wear properties of compressor oil using MoS2 nano-additives. Adv. Powder Technol. 2022, 33, 103648. [Google Scholar] [CrossRef]
- Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.S. Recent progress in dye sensitized solar cell materials and photo-supercapacitors: A review. J. Power Sources 2021, 493, 229698. [Google Scholar] [CrossRef]
- Rouhani, S.; Hosseinnezhad, M.; Sohrab, N.; Gharanjig, K.; Salem, A.; Ranjbar, Z. Investigation of the Effect of rGO/TiO2 on Photovoltaic Performance of DSSCs Devices. Prog. Color. Color. Coat. 2022, 15, 123–131. [Google Scholar]
- Yang, J.; Yu, X.; Li, Y.; Cheng, G.; Yi, Z.; Zhang, Z.; Chi, F.; Liu, L. A Novel Dye-Sensitized Solar Cell Structure Based on Metal Photoanode without FTO/ITO. Micromachines 2022, 13, 122. [Google Scholar] [CrossRef]
- Hosseinnezhad, M.; Ghahari, M.; Mobarhan, G.; Rouhani, S.; Fathi, M. Towards low cost and green photovoltaic devices: Using natural photosensitizers and MoS2/Graphene oxide composite counter electrodes. Opt. Mater. 2023, 139, 113775. [Google Scholar] [CrossRef]
- Wu, Z.S.; Song, X.C.; Liu, Y.D.; Zhang, J.; Wang, H.S.; Chen, Z.J.; Liu, S.; Weng, Q.; An, Z.W.; Guo, W.J. New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells. J. Power Sources 2020, 451, 227776. [Google Scholar] [CrossRef]
- Rabiei, M.; Palevicius, A.; Monshi, A.; Nasiri, S.; Vilkauskas, A.; Janusas, G. Comparing Methods for Calculating Nano Crystal Size of Natural Hydroxyapatite Using X-ray Diffraction. Nanomaterials 2020, 10, 1627. [Google Scholar] [CrossRef]
- Nasiri, S.; Rabiei, M.; Shaki, H.; Hosseinnezhad, M.; Kalyani, K.; Palevicius, A.; Vilkauskas, A.; Janusas, G.; Nutalapati, V.; Kment, S.; et al. What is TADF (thermally activated delayed fluorescence) compared to the mechanisms of FL (fluorescence), PH (phosphorescence), and TTA (triplet–triplet annihilation) based on a novel naphthalimide sulfonylphenyl derivative as a host? J. Photochem. Photobiol. A Chem. 2024, 447, 115289. [Google Scholar] [CrossRef]
- Liu, C.; Bai, Y.; Zhao, Y.; Yao, H.; Pang, H. MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Mater. 2020, 33, 470–502. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, L.; Chen, W.; Huang, G.; Chen, D.; Wang, L.; Lee, J.Y. Facile synthesis of MoS2/graphene composites: Effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Adv. 2013, 3, 21675–21684. [Google Scholar] [CrossRef]
- Barzegar, M.; Berahman, M.; Zad, A.I. Sensing behavior of flower-shaped MoS2 nanoflakes: Case study with methanol and xylene. Beilstein J. Nanotechnol. 2018, 9, 608–615. [Google Scholar] [CrossRef]
- Nikam, R.D.; Kwak, M.; Lee, J.; Rajput, K.G.; Hwang, H. Controlled Ionic Tunneling in Lithium Nanoionic Synaptic Transistor through Atomically Thin Graphene Layer for Neuromorphic Computing. Adv. Electron. Mater. 2020, 6, 1901100. [Google Scholar] [CrossRef]
- Wu, Z.; Qi, J.; Wang, W.; Zeng, Z.; He, Q. Emerging elemental two-dimensional materials for energy applications. J. Mater. Chem. A 2021, 9, 18793–18817. [Google Scholar] [CrossRef]
- Nikam, R.D.; Lu, A.Y.; Sonawane, P.A.; Kumar, U.R.; Yadav, K.; Li, L.J.; Chen, Y.T. Three-Dimensional Heterostructures of MoS2 Nanosheets on Conducting MoO2 as an Efficient Electrocatalyst to Enhance Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2015, 7, 23328–23335. [Google Scholar] [CrossRef]
- Huang, R.Y.; Tsai, W.H.; Wen, J.J.; Chang, Y.J.; Chow, T.J. Spiro[fluorene-9,9′-phenanthren]-10′-one as auxiliary acceptor of D-A-π-A dyes for dye-sensitized solar cells under one sun and indoor light. J. Power Sources 2020, 458, 228063. [Google Scholar] [CrossRef]
- Movahedi, J.; Haratizadeh, H.; Falah, N.; Hosseinnezhad, M. Investigation of effect of thiophene-2-acetic acid as an electron anchoring group for a photovoltaic device. Opto-Electron. Rev. 2019, 27, 334–338. [Google Scholar] [CrossRef]
- da Silva, L.; Sánchez, M.; Freeman, H.S. New tetrazole based dyes as efficient co-sensitizers for dsscs: Structure-properties relationship. Org. Electron. 2020, 87, 105964. [Google Scholar] [CrossRef]
- Bu, I.Y.-y. Hydrothermal production of low-cost bismuth sulfide/reduced graphene oxide nanocomposite as counter electrode for DSSCs. Optik 2020, 217, 164868. [Google Scholar] [CrossRef]
- Suriani, A.B.; Muqoyyanah Mohamed, A.; Mamat, M.H.; Hashim, N.; Isa, I.M.; Malek, M.F.; Kairi, M.I.; Mohamed, A.R.; Ahmad, M.K. Improving the photovoltaic performance of DSSCs using a combination of mixed-phase TiO2 nanostructure photoanode and agglomerated free reduced graphene oxide counter electrode assisted with hyperbranched surfactant. Optik 2018, 158, 522–534. [Google Scholar] [CrossRef]
- Gaussian 09 Citation. Available online: https://gaussian.com/ (accessed on 1 November 2016).
- Nasiri, S.; Dashti, A.; Hosseinnezhad, M.; Rabiei, M.; Palevicius, A.; Doustmohammadi, A.; Janusas, G. Mechanochromic and thermally activated delayed fluorescence dyes obtained from D–A–D′ type, consisted of xanthen and carbazole derivatives as an emitter layer in organic light emitting diodes. Chem. Eng. J. 2022, 430, 131877. [Google Scholar] [CrossRef]
- Lefebvre, C.; Khartabil, H.; Boisson, J.C.; Contreras-García, J.; Piquemal, J.P.; Hénon, E. The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations. ChemPhysChem 2018, 19, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- El Azouzi, L.; El Hadki, H.; El Hadki, A.; El Alouani, M.; Mabrouki, J.; Tazi, R.; Komiha, N.; Zrineh, A.; Kabbaj, O.K. A computational investigation on the adsorption of amoxycillin on graphene oxide nanosheet. Int. J. Environ. Anal. Chem. 2022. [Google Scholar] [CrossRef]
- Pearson, R.G. Chemical hardness and density functional theory. J. Chem. Sci. 2005, 117, 369–377. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Franchi, D.; Bartolini, M.; D’Amico, F.; Calamante, M.; Zani, L.; Reginato, G.; Mordini, A.; Dessì, A. Exploring Different Designs in Thieno[3,4-b]pyrazine-Based Dyes to Enhance Divergent Optical Properties in Dye-Sensitized Solar Cells. Processes 2023, 11, 1542. [Google Scholar] [CrossRef]
- Traverse, C.J.; Pandey, R.; Barr, M.C.; Lunt, R.R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2017. [Google Scholar] [CrossRef]
- Meguellati, K.; Ladame, S.; Spichty, M. A conceptually improved TD-DFT approach for predicting the maximum absorption wavelength of cyanine dyes. Dye. Pigment. 2011, 90, 114–118. [Google Scholar] [CrossRef]
- Kumar, B.A.; Vetrivelan, V.; Ramalingam, G.; Manikandan, A.; Viswanathan, S.; Boomi, P.; Ravi, G. Computational studies and experimental fabrication of DSSC device assembly on 2D-layered TiO2 and MoS2@TiO2 nanomaterials. Phys. B Condens. Matter 2022, 633, 413770. [Google Scholar] [CrossRef]
- Li, F.; Jiang, X.; Zhao, J.; Zhang, S. Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy 2015, 16, 488–515. [Google Scholar] [CrossRef]
- Yu, X.Y.; Feng, Y.; Guan, B.; Lou, X.W.D.; Paik, U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ. Sci. 2016, 9, 1246–1250. [Google Scholar] [CrossRef]
- Sanjay, P.; Deepa, K.; Madhavan, J.; Senthil, S. Optical, spectral and photovoltaic characterization of natural dyes extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea used as sensitizers for ZnO based dye sensitized solar cells. Opt. Mater. 2018, 83, 192–199. [Google Scholar] [CrossRef]
- Zoei, M.S.; Sadeghi, M.H.; Salehi, M. Effect of Grinding Parameters on the Fracture Toughness of WC–10Co–4Cr Coating Deposited by HVOF. Prog. Color. Color. Coat. 2019, 12, 231–239. [Google Scholar]
- Suriani, A.B.; Fatiatun Mohamed, A.; Muqoyyanah Hashim, N.; Rosmi, M.S.; Mamat, M.H.; Malek, M.F.; Salifairus, M.J.; Abdul Khalil, H.P.S. Reduced graphene oxide/platinum hybrid counter electrode assisted by custom-made triple-tail surfactant and zinc oxide/titanium dioxide bilayer nanocomposite photoanode for enhancement of DSSCs photovoltaic performance. Optik 2018, 161, 70–83. [Google Scholar] [CrossRef]
- Tamilselvi, C.; Duraisamy, P.; Subathra, N. Graphene wrapped NiSe2 nanocomposite-based counter electrode for dye-sensitized solar cells (DSSCs). Diam. Relat. Mater. 2021, 116, 108396. [Google Scholar] [CrossRef]
- Francis, M.K.; Santhosh, N.; Govindaraj, R.; Ahmed, N.; Balaji, C. Bifacial DSSC fabricated using low-temperature processed 3D flower like MoS2—High conducting carbon composite counter electrodes. Mater. Today Commun. 2021, 27, 102208. [Google Scholar] [CrossRef]
- Silambarasan, K.; Harish, S.; Hara, K.; Archana, J.; Navaneethan, M. Ultrathin layered MoS2 and N-doped graphene quantum dots (N-GQDs) anchored reduced graphene oxide (rGO) nanocomposite-based counter electrode for dye-sensitized solar cells. Carbon 2021, 181, 107–117. [Google Scholar] [CrossRef]
Dye | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
μ (eV) | −3.87 | −4.30 | −3.98 | −4.39 | −3.65 | −4.17 | −3.78 | −4.28 |
η (eV) | 3.85 | 3.49 | 3.85 | 3.44 | 3.13 | 2.99 | 3.21 | 3.01 |
ω (eV) | 1.95 | 2.65 | 2.06 | 2.80 | 2.13 | 2.91 | 2.23 | 3.05 |
Dye | JSC (mA·cm−2) | VOC (V) | FF | η (%) |
---|---|---|---|---|
1 | 5.12 | 0.45 | 0.46 | 1.06 |
2 | 6.16 | 0.51 | 0.42 | 1.32 |
3 | 7.59 | 0.53 | 0.44 | 1.77 |
4 | 9.09 | 0.52 | 0.44 | 2.08 |
5 | 3.08 | 0.54 | 0.44 | 0.73 |
6 | 4.81 | 0.51 | 0.44 | 1.08 |
7 | 3.86 | 0.51 | 0.66 | 1.30 |
8 | 5.92 | 0.54 | 0.45 | 1.44 |
N719 | 12.92 | 0.68 | 0.42 | 3.69 |
Dye | JSC (mA·cm−2) | VOC (V) | FF (%) | η (%) |
---|---|---|---|---|
1 | 7.29 | 0.57 | 0.63 | 2.62 |
2 | 9.04 | 0.64 | 0.60 | 3.47 |
3 | 10.28 | 0.62 | 0.64 | 4.08 |
4 | 12.62 | 0.64 | 0.64 | 5.17 |
5 | 4.39 | 0.65 | 0.64 | 1.83 |
6 | 9.01 | 0.55 | 0.45 | 2.23 |
7 | 7.73 | 0.65 | 0.65 | 3.27 |
8 | 8.16 | 0.66 | 0.65 | 3.50 |
N719 | 16.68 | 0.84 | 0.62 | 8.68 |
Dye | JSC (mA·cm−2) | VOC (V) | FF (%) | η (%) |
---|---|---|---|---|
1 | 8.17 | 0.55 | 0.63 | 2.83 |
2 | 9.52 | 0.62 | 0.61 | 3.60 |
3 | 10.30 | 0.63 | 0.65 | 4.22 |
4 | 14.39 | 0.62 | 0.64 | 5.71 |
5 | 4.90 | 0.63 | 0.65 | 2.01 |
6 | 7.13 | 0.62 | 0.64 | 2.83 |
7 | 8.73 | 0.62 | 0.65 | 3.52 |
8 | 8.87 | 0.64 | 0.66 | 3.75 |
N719 | 18.65 | 0.81 | 0.62 | 9.37 |
Dye | JSC (mA·cm−2) | VOC (V) | FF (%) | η (%) |
---|---|---|---|---|
1 | 7.71 | 0.57 | 0.63 | 2.77 |
2 | 9.40 | 0.62 | 0.61 | 3.558 |
3 | 9.98 | 0.65 | 0.64 | 4.15 |
4 | 13.67 | 0.64 | 0.64 | 5.60 |
5 | 4.71 | 0.65 | 0.64 | 1.96 |
6 | 6.69 | 0.64 | 0.64 | 0.74 |
7 | 8.32 | 0.64 | 0.65 | 3.46 |
8 | 8.64 | 0.66 | 0.65 | 3.71 |
N719 | 17.40 | 0.85 | 0.62 | 9.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseinnezhad, M.; Ghahari, M.; Mobarhan, G.; Fathi, M.; Palevicius, A.; Nutalapati, V.; Janusas, G.; Nasiri, S. New Insights into Improving the Photovoltaic Performance of Dye-Sensitized Solar Cells by Removing Platinum from the Counter Electrode Using a Graphene-MoS2 Composite or Hybrid. Micromachines 2023, 14, 2161. https://doi.org/10.3390/mi14122161
Hosseinnezhad M, Ghahari M, Mobarhan G, Fathi M, Palevicius A, Nutalapati V, Janusas G, Nasiri S. New Insights into Improving the Photovoltaic Performance of Dye-Sensitized Solar Cells by Removing Platinum from the Counter Electrode Using a Graphene-MoS2 Composite or Hybrid. Micromachines. 2023; 14(12):2161. https://doi.org/10.3390/mi14122161
Chicago/Turabian StyleHosseinnezhad, Mozhgan, Mehdi Ghahari, Ghazal Mobarhan, Mohsen Fathi, Arvydas Palevicius, Venkatramaiah Nutalapati, Giedrius Janusas, and Sohrab Nasiri. 2023. "New Insights into Improving the Photovoltaic Performance of Dye-Sensitized Solar Cells by Removing Platinum from the Counter Electrode Using a Graphene-MoS2 Composite or Hybrid" Micromachines 14, no. 12: 2161. https://doi.org/10.3390/mi14122161
APA StyleHosseinnezhad, M., Ghahari, M., Mobarhan, G., Fathi, M., Palevicius, A., Nutalapati, V., Janusas, G., & Nasiri, S. (2023). New Insights into Improving the Photovoltaic Performance of Dye-Sensitized Solar Cells by Removing Platinum from the Counter Electrode Using a Graphene-MoS2 Composite or Hybrid. Micromachines, 14(12), 2161. https://doi.org/10.3390/mi14122161