Charge Characteristics of Dielectric Particle Swarm Involving Comprehensive Electrostatic Information
Abstract
:1. Introduction
2. Simulation Conditions
2.1. Simulation Methods
2.2. Simulation Setup
3. Results and Discussion
3.1. Particles of the Same Radius and Surface Charge Density
3.2. Particles of the Same Radius and Different Surface Charge Densities
3.3. Particles of Different Radius and Surface Charge Densities
3.4. Simulation Methods Discussion
- The continuous method can be used in the condition of the same radius and surface charge density. This method can be used to obtain the trend of electric potential and electric field strength for the cone ESD occurring between particles and container walls. This method has the simplest modeling and the lowest requirement for grid division among the three methods, so it only needs a very short simulation time to complete, but the accuracy is unsatisfactory.
- The grid method can be used in conditions of the same radius and different surface charge densities. The grid method can obtain the accurate electric potential value and the uneven electric potential. The grid method needs a shorter time compared to the particle method, and it can also be used first in large-scale particle simulation to determine the location of the maximum potential and the maximum electric field strength distribution, but it cannot be employed to simulate particles with different radii.
- The particle method based on the combination of DEM with FEM can provide comprehensive information about particles. This method solves the problem stemming from the fact that the influence of particle radius on the electric field cannot be studied via the previous simulation. The air domain and point contact in actual working conditions obtain a more accurate electric field strength, which is useful to determine the occurrences of large brush charging and tree charging.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- model.component(“comp1”).geom(“geom1”).create(“sph1”, “Sphere”);
- model.geom(‘geom1’).feature(‘sph1’).set(‘r’, ‘11.583111’);
- model.geom(‘geom1’).feature(‘sph1’).set(‘pos’, [151611, 253611, 254311]);
- model.component(“comp1”).geom(“geom1”).feature(“sph1”).set(“selresult”, true);
- model.component(“comp1”).geom(“geom1”).feature(“sph1”).set(“selresultshow”, “all”);
- …
- geom1 = model.component(‘comp1’).geom(‘geom1’);
- for i = 1:50000
- DM1 = replace(DM,’sph1’,sph(i,1));
- DM2 = replace(DM1,’11.583111’,cs(i,5));
- DM3 = replace(DM2,’151611’,cs(i,1));
- DM4 = replace(DM3,’253611’,cs(i,2));
- DM5 = replace(DM4,’254311’,cs(i,3));
- eval(DM5)
- end
- geom1.run;
References
- Du, S.H.; Fu, S.K.; He, W.C.; Li, Q.Y.; Li, K.X.; Wu, H.Y.; Wang, J.; Shan, C.C.; Mu, Q.J.; Hu, C.G. High Durable Rotary Triboelectric Nanogenerator Enabled by Ferromagnetic Metal Particles as a Friction Material. Adv. Funct. Mater. 2023, 33, 2346491. [Google Scholar] [CrossRef]
- Chun, J.; Kim, J.W.; Jung, W.S.; Kang, C.Y.; Kim, S.W.; Wang, Z.L.; Baik, J.M. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 2015, 8, 3006–3012. [Google Scholar] [CrossRef]
- Kou, H.Y.; Wang, H.M.; Cheng, R.W.; Liao, Y.J.; Shi, X.; Luo, J.J.; Li, D.; Wang, Z.L. Smart Pillow Based on Flexible and Breathable Triboelectric Nanogenerator Arrays for Head Movement Monitoring during Sleep. ACS Appl. Mater. Interfaces 2022, 14, 23998–24007. [Google Scholar] [CrossRef]
- Ouyang, R.; Huang, Y.; Ye, H.T.; Zhang, Z.J.; Xue, H. Copper particles-PTFE tube based triboelectric nanogenerator for wave energy harvesting. Nano Energy 2022, 102, 107749. [Google Scholar] [CrossRef]
- Liu, H.Y.; Wang, H.; Fan, Y.P.; Lyu, Y.; Liu, Z.H. A triboelectric nanogenerator based on white sugar for self-powered humidity sensor. Solid State Electron. 2020, 174, 107920. [Google Scholar] [CrossRef]
- Xu, S.W.; Feng, Y.G.; Liu, Y.; Wu, Z.S.; Zhang, Z.N.; Feng, M.; Zhang, S.N.; Sun, G.Y.; Wang, D.A. Gas-solid two-phase flow-driven triboelectric nanogenerator for wind-sand energy harvesting and self-powered monitoring sensor. Nano Energy 2021, 85, 106023. [Google Scholar] [CrossRef]
- Choi, K.; Osada, Y.; Endo, Y.; Suzuki, T. Experimental study on the effect of metal protrusions inside silos on electrostatic discharges. Powder Technol. 2020, 366, 661–666. [Google Scholar] [CrossRef]
- Matsusaka, S.; Maruyama, H.; Matsuyama, T.; Ghadiri, M. Triboelectric charging of powders: A review. Chem. Eng. Sci. 2010, 65, 5781–5807. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Li, L.L.; Zhou, Q.; Liang, C.; Meng, H.; Lan, Q.; Cao, Z.; Chen, X.P.; Ma, J.L. Electrostatic discharge pattern and energy probability distribution of different polarity powders in industrial silo. Chem. Eng. Res. Des. 2023, 192, 91–101. [Google Scholar] [CrossRef]
- Xie, L.; Li, J.; Liu, Y. Review on charging model of sand particles due to collisions. Theor. Appl. Mech. Lett. 2020, 10, 276–285. [Google Scholar] [CrossRef]
- Glor, M. Hazards due to electrostatic charging of powders. J. Electrost. 1985, 16, 175–191. [Google Scholar] [CrossRef]
- Larsen, O.; Hagen, J.H.; van Wingerden, K.; Eckhoff, R.K. Ignition of dust clouds by brush discharges in oxygen enriched atmospheres. Gefahrstoffe Reinhalt. Der Luft 2001, 61, 85–90. [Google Scholar] [CrossRef]
- Glor, M.; Maurer, B. Ignition tests with discharges from bulked polymeric granules in silos (cone discharges). J. Electrost. 1993, 30, 123–133. [Google Scholar] [CrossRef]
- Maurer, B. Entladungen infolge elektrostatischer Aufladung in großen Lagersilos. Chem. Ing. Tech. 1979, 51, 98–103. [Google Scholar] [CrossRef]
- Tomofumi, M.; Teruo, S.; Kwangseok, C.; Takashi, I. Control of electrostatic charge for powder by using feedback control-type ionizer system. J. Loss Prev. Process Ind. 2010, 23, 237–241. [Google Scholar]
- Romay, F.J.; Liu, B.Y.H.; Pui, D.Y.H. A Sonic Jet Corona Ionizer for Electrostatic Discharge and Aerosol Neutralization. Aerosol Sci. Technol. 1994, 20, 31–41. [Google Scholar] [CrossRef]
- Tabata, T.; Kodama, T.; Cheung, W.L.; Nomura, N. General characteristics of a newly developed bipolar static charge eliminator. J. Electrost. 1997, 42, 193–202. [Google Scholar] [CrossRef]
- Glor, M.; Luttgens, G.; Maurer, B.; Post, L. Discharges from bulked polymeric granules during the filling of silos-characterization b by measurements and influencing factors. J. Electrost. 1989, 23, 35–43. [Google Scholar] [CrossRef]
- Watana, S.; Saito, S.; Suzuki, T. Numerical simulation of electrostatic charge in powder pneumatic conveying process. Powder Technol. 2003, 135–136, 112–117. [Google Scholar] [CrossRef]
- Choi, K.; Mogami, T.; Suzuki, T.; Yamaguma, M. A novel bipolar electrostatic ionizer for charged polypropylene granules used in a pneumatic powder transport facility. J. Loss Prev. Process Ind. 2016, 40, 502–506. [Google Scholar] [CrossRef]
- Kwangseok, C.; Tomofumi, M.; Teruo, S.; Yamaguma, M. Experimental study on the relationship between the charge amount of polypropylene granules and the frequency of electrostatic discharges while silo loading. J. Loss Prev. Process Ind. 2014, 32, 1–4. [Google Scholar]
- Shoyama, M.; Osada, Y.; Suzuki, T.; Choi, K. Effect of powder feeding rate on electric charging and discharging in powder loading. Powder Technol. 2023, 424, 118538. [Google Scholar] [CrossRef]
- Ohsawa, A. Computer simulation for assessment of electrostatic hazards in filling operations with powder. Powder Technol. 2003, 135, 216–222. [Google Scholar] [CrossRef]
- Wei, S.; Bai, C.; Li, C. Simulation of Electrostatic Cone Discharge in Propellant Production Process. Acta Armamentarii 2017, 38, 892–899. [Google Scholar]
- He, M.; Ma, Q.C.; Zhang, L.B. Numerical study on electrostatic potential distribution of large cylindrical oil tanks. J. Electrostat. 2015, 75, 77–84. [Google Scholar] [CrossRef]
- Zhou, Q.; Hu, J.W.; Liang, C.; Chen, X.P.; Liu, D.Y.; Ma, J.L. Study on electric field distribution in cylindrical metal silo containing charged polyethylene powder. Powder Technol. 2019, 353, 145–155. [Google Scholar] [CrossRef]
- Zhou, Q.; Liang, C.; Hu, J.W.; Chen, X.P.; Liu, D.Y.; Ma, J.L. Effect of particle segregation on non-uniform electrostatic charge distribution in cylindrical silo during loading binary particles with size ratio of 2.5:1 centrally. Powder Technol. 2021, 378, 772–784. [Google Scholar] [CrossRef]
- Choi, K.S.; Mogami, T.; Suzuki, T.; Kim, S.C.; Yamaguma, M. Charge reduction on polypropylene granules and suppression of incendiary electrostatic discharges by using a novel AC electrostatic ionizer. J. Loss Prev. Process Ind. 2013, 26, 255–260. [Google Scholar] [CrossRef]
Particle Parameter | Value |
---|---|
Shape | Sphere |
Radius (mm) | 1.7~2.3 |
Density (kg/m3) | 650 |
Poisson ration | 0.3 |
Young’s modulus (MPa) | 25 |
Surface charge density (μC/m2) | 0.5~1.5 |
Relative dielectric constant | 1.88 |
Y-Z Plane | X-Y Plane (Bottom) | X-Y Plane (Middle) | X-Y Plane (Top) | |
---|---|---|---|---|
Same radius and surface charge density (MV/m) | 8.26 | 10.43 | 5.74 | 4.22 |
Same radius and different surface charge densities (MV/m) | 6.76 | 7.68 | 4.05 | 3.26 |
Different radius and surface charge densities (MV/m) | 7.90 | 9.24 | 5.05 | 3.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Shen, X.; Wang, R.; Zhou, Z.; Yang, Z.; Han, Y.; Xiong, Y. Charge Characteristics of Dielectric Particle Swarm Involving Comprehensive Electrostatic Information. Micromachines 2023, 14, 2151. https://doi.org/10.3390/mi14122151
Feng Y, Shen X, Wang R, Zhou Z, Yang Z, Han Y, Xiong Y. Charge Characteristics of Dielectric Particle Swarm Involving Comprehensive Electrostatic Information. Micromachines. 2023; 14(12):2151. https://doi.org/10.3390/mi14122151
Chicago/Turabian StyleFeng, Yue, Xingfeng Shen, Ruiguo Wang, Zilong Zhou, Zhaoxu Yang, Yanhui Han, and Ying Xiong. 2023. "Charge Characteristics of Dielectric Particle Swarm Involving Comprehensive Electrostatic Information" Micromachines 14, no. 12: 2151. https://doi.org/10.3390/mi14122151
APA StyleFeng, Y., Shen, X., Wang, R., Zhou, Z., Yang, Z., Han, Y., & Xiong, Y. (2023). Charge Characteristics of Dielectric Particle Swarm Involving Comprehensive Electrostatic Information. Micromachines, 14(12), 2151. https://doi.org/10.3390/mi14122151