Encapsulation of CsPb2Br5 in TiO2 Microcrystals to Enhance Environmental Stability
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Preparation of CsPb2Br5/TiO2 NCs
2.3. Material Characterization
2.4. Environmental Stability Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Yang, T.; Zheng, Y.; Du, Z.; Liu, W.; Yang, Z.; Gao, F.; Wang, L.; Chou, K.-C.; Hou, X.; Yang, W. Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano 2018, 12, 1611–1617. [Google Scholar] [CrossRef]
- Jianhai, L.; Leimeng, X.; Tao, W.; Jizhong, S.; Jiawei, C.; Jie, X.; Yuhui, D.; Bo, C.; Qingsong, S.; Boning, H.; et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885. [Google Scholar]
- Du, K.; He, L.; Song, S.; Feng, J.; Li, Y.; Zhang, M.; Li, H.; Li, C.; Zhang, H. In situ embedding synthesis of highly stable CsPbBr3/CsPb2Br5@PbBr(OH) nano/microspheres through water assisted srategy. Adv. Funct. Mater. 2021, 31, 2103275. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, K.; Yang, F.; Zheng, J.; Zuo, Y.; Li, C.; Cheng, B.; Wang, Q. All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance. Dalton Trans. 2017, 46, 1766–1769. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Hu, Z.; Chen, W.; Xing, X.; Zang, Z.; Hu, W.; Qiu, J.; Du, J.; Leng, Y.; Jiang, X.; et al. Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy 2016, 28, 462–468. [Google Scholar] [CrossRef]
- Zhou, S.; Tang, R.; Yin, L. Slow-photon-effect-induced photoelectrical-conversion efficiency enhancement for carbon-quantum-dot-sensitized inorganic CsPbBr3 inverse opal perovskite solar cells. Adv. Mater. 2017, 29, 1703682. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yuan, F.; Li, X.; Li, Y.; Zhong, H.; Fan, L.; Yang, S. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910. [Google Scholar]
- Huang, H.; Chen, B.; Wang, Z.; Hung, T.F.; Susha, A.S.; Zhong, H.; Rogach, A.L. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 2016, 7, 5699–5703. [Google Scholar] [CrossRef]
- Meyns, M.; Perálvarez, M.; Heuer-Jungemann, A.; Hertog, W.; Ibáñez, M.; Nafria, R.; Genç, A.; Arbiol, J.; Kovalenko, M.V.; Carreras, J.; et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl. Mater. Interfaces 2016, 8, 19579–19586. [Google Scholar] [CrossRef]
- Chen, D.; Fang, G.; Chen, X. Silica-coated Mn-doped CsPb(Cl/Br)3 inorganic perovskite quantum dots: Exciton-to-Mn energy transfer and blue-excitable solid-state lighting. ACS Appl. Mater. Interfaces 2017, 9, 40477–40487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, D.; Chu, Y.; Chang, L.; Xu, J. Space-confined growth of Cs2CuBr4 perovskite nanodots in mesoporous CeO2 for photocatalytic CO2 reduction: Structure regulation and built-in electric Field construction. J. Phys. Chem. Lett. 2023, 14, 5249–5259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, D.; Dong, Z.; Jiang, Y.; Li, X.; Chu, Y.; Xu, J. Lead-free Cs2AgBiBr6 nanocrystals confined in MCM-48 mesoporous molecular sieve for efficient photocatalytic CO2 reduction. Sol. RRL 2023, 7, 2300038. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Hu, H.; Chu, Y.; Xu, J. In situ growth of lead-free Cs2CuBr4 perovskite quantum dots in KIT6 mesoporous molecular sieve for CO2 adsorption, activation, and reduction. Inorg. Chem. 2023, 62, 9240–9248. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhong, Q.; Yang, D.; Chen, M.; Hu, H.; Pan, Q.; Liu, H.; Cao, M.; Xu, Y.; Sun, B.; et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand. Langmuir 2017, 33, 12689–12696. [Google Scholar] [CrossRef]
- Li, Z.-J.; Hofman, E.; Li, J.; Davis, A.H.; Tung, C.-H.; Wu, L.-Z.; Zheng, W. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 2018, 28, 1704288. [Google Scholar] [CrossRef]
- Stefan, S.; Maurice, V.G.; Harun, T. A CsPbBr3/TiO2 composite for visible-light driven photocatalytic benzyl alcohol oxidation. ChemSusChem 2018, 11, 2057–2061. [Google Scholar]
- Tang, X.; Hu, Z.; Yuan, W.; Hu, W.; Shao, H.; Han, D.; Zheng, J.; Hao, J.; Zang, Z.; Du, J.; et al. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv. Opt. Mater. 2017, 5, 1600788. [Google Scholar] [CrossRef]
- Wang, R.; Li, Z.; Li, S.; Wang, P.; Xiu, J.; Wei, G.; Liu, H.; Jiang, N.; Liu, Y.; Zhong, M. All-inorganic perovskite CsPb2Br5 nanosheets for photodetector application based on rapid growth in aqueous phase. ACS Appl. Mater. Interfaces 2020, 12, 41919–41931. [Google Scholar] [CrossRef]
- Rahal, R.; Daniele, S.; Hubert-Pfalzgraf, L.G.; Guyot-Ferréol, V.; Tranchant, J.-F. Synthesis of para-amino benzoic acid–TiO2 hybrid nanostructures of controlled functionality by an aqueous one-step process. Eur. J. Inorg. Chem. 2008, 2008, 980–987. [Google Scholar] [CrossRef]
- Dursun, I.; De Bastiani, M.; Turedi, B.; Alamer, B.; Shkurenko, A.; Yin, J.; El-Zohry, A.M.; Gereige, I.; AlSaggaf, A.; Mohammed, O.F.; et al. CsPb2Br5 single crystals: Synthesis and characterization. ChemSusChem 2017, 10, 3746–3749. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Cong, S.; Xu, Y.i. Brookite vs anatase TiO2 in the photocatalytic activity for organic degradation in water. ACS Catal. 2014, 4, 3273–3280. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Q.; Lv, L.; Han, W.; Wu, G.; Yang, D.; Dong, A. Synthesis of ultrasmall CsPbBr3 nanoclusters and their transformation to highly deep-blue-emitting nanoribbons at room temperature. Nanoscale 2017, 9, 17248–17253. [Google Scholar] [CrossRef] [PubMed]
- Xuan, T.; Yang, X.; Lou, S.; Huang, J.; Liu, Y.; Yu, J.; Li, H.; Wong, K.-L.; Wang, C.; Wang, J. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale 2017, 9, 15286–15290. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445. [Google Scholar] [CrossRef]
- Li, Y.; Lv, Y.; Guo, Z.; Dong, L.; Zheng, J.; Chai, C.; Chen, N.; Lu, Y.; Chen, C. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 15888–15894. [Google Scholar] [CrossRef]
- Wu, T.; Xing, Z.; Mou, S.; Li, C.; Qiao, Y.; Liu, Q.; Zhu, X.; Luo, Y.; Shi, X.; Zhang, Y.; et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticle by Fe doping. Angew. Chem. Int. Edit 2019, 58, 18449–18453. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, Y.; Lu, M.; Zhu, J.; Li, M.; Shan, Y.; Shen, J.; Song, C. High-loading nickel phosphide catalysts supported on SiO2-TiO2 for hydrodeoxygenation of guaiacol. Energy Fuels 2019, 33, 7696–7704. [Google Scholar] [CrossRef]
- Tian, B.; Li, C.; Zhang, J. One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem. Eng. J. 2012, 191, 402–409. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.; Ding, C.; Toyoda, T.; Ogomi, Y.; Ripolles, T.S.; Hayase, S.; Minemoto, T.; Yoshino, K.; Dai, S.; et al. Ultrafast electron injection from photoexcited perovskite CsPbI3 QDs into TiO2 nanoparticles with injection efficiency near 99%. J. Phys. Chem. Lett. 2018, 9, 294–297. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, X.; Yang, W.; Wei, Y.; Wang, J. Encapsulation of CsPb2Br5 in TiO2 Microcrystals to Enhance Environmental Stability. Micromachines 2023, 14, 2186. https://doi.org/10.3390/mi14122186
Wang Y, Xu X, Yang W, Wei Y, Wang J. Encapsulation of CsPb2Br5 in TiO2 Microcrystals to Enhance Environmental Stability. Micromachines. 2023; 14(12):2186. https://doi.org/10.3390/mi14122186
Chicago/Turabian StyleWang, Yuezhu, Xiaotong Xu, Wenchao Yang, Yawen Wei, and Junsheng Wang. 2023. "Encapsulation of CsPb2Br5 in TiO2 Microcrystals to Enhance Environmental Stability" Micromachines 14, no. 12: 2186. https://doi.org/10.3390/mi14122186
APA StyleWang, Y., Xu, X., Yang, W., Wei, Y., & Wang, J. (2023). Encapsulation of CsPb2Br5 in TiO2 Microcrystals to Enhance Environmental Stability. Micromachines, 14(12), 2186. https://doi.org/10.3390/mi14122186