Investigation on Influence Factors of Photo-Induced PLZT-Based Ion Drag Pump
Abstract
:1. Introduction
2. Materials and Methods
2.1. Working Mechanisms of Photo-Induced PLZT-Based Ion Drag Pump
2.2. Mathematical Modeling of Photo-Induced PLZT-Based Ion Drag Pump
2.3. Characterization Experiments of Photovoltage for PLZT Ceramic
3. Results and Discussion
3.1. Setup of Simulation for Photo-Induced PLZT-Based Ion Drag Pump
3.2. Effect of the Electrode Structure
3.3. Effect of Fluid Channel and Fluid Property
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric Biomaterials for Sensors and Actuators. Adv. Mater. 2019, 31, 1802084. [Google Scholar] [CrossRef]
- Wang, R.; Hu, Y.; Shen, D.; Ma, J.; Li, J.; Wen, J. A Novel Piezoelectric Inchworm Actuator Driven by One Channel Direct Current Signal. IEEE Trans. Ind. Electron. 2021, 68, 2015–2023. [Google Scholar] [CrossRef]
- Mitchell, S.K.; Martin, T.; Keplinger, C. A Pocket-Sized Ten-Channel High Voltage Power Supply for Soft Electrostatic Actuators. Adv. Mater. Technol. 2022, 7, 2101469. [Google Scholar] [CrossRef]
- Acome, E.; Mitchell, S.K.; Morrissey, T.G.; Emmett, M.B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C. Hydraulically Amplified Self-Healing Electrostatic Actuators with Muscle-like Performance. Science 2018, 359, 61–65. [Google Scholar] [CrossRef]
- Park, J.; Park, J.K. Finger-Actuated Microfluidic Device for the Blood Cross-Matching Test. Lab Chip 2018, 18, 1215–1222. [Google Scholar] [CrossRef]
- Park, J.; Park, J.K. Integrated Microfluidic Pumps and Valves Operated by Finger Actuation. Lab Chip 2019, 19, 2973–2977. [Google Scholar] [CrossRef]
- Ding, L.; Dai, N.; Mu, X.; Xie, S.; Fan, X.; Li, D.; Cheng, X. Design of Soft Multi-Material Pneumatic Actuators Based on Principal Strain Field. Mater. Des. 2019, 182, 108000. [Google Scholar] [CrossRef]
- Tang, S.-Y.; Zhang, X.; Sun, S.; Yuan, D.; Zhao, Q.; Yan, S.; Deng, L.; Yun, G.; Zhang, J.; Zhang, S.; et al. Versatile Microfluidic Platforms Enabled by Novel Magnetorheological Elastomer Microactuators. Adv. Funct. Mater. 2018, 28, 1705484. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Ma, Y.; Pan, B.; Sun, M.; Zhang, G.; Chai, H.; Li, J.; Jiang, S. Laser-Assisted Thermoplastic Composite Automated Fiber Placement Robot for Bonding GF/PP Unidirectional Composites and Braided Composites. Compos. Part B Eng. 2024, 287, 111798. [Google Scholar] [CrossRef]
- Russel, M.K.; Seivaganapathy, P.R.; Ching, C.Y. Ion Drag Electrohydrodynamic (EHD) Micro-Pumps under a Pulsed Voltage. J. Electrost. 2016, 82, 48–54. [Google Scholar] [CrossRef]
- Vazquez, P.A.; Talmor, M.; Seyed-Yagoobi, J.; Traore, P.; Yazdani, M. In-Depth Description of Electrohydrodynamic Conduction Pumping of Dielectric Liquids: Physical Model and Regime Analysis. Phys. Fluids 2019, 31, 113601. [Google Scholar] [CrossRef]
- Du, Z.; Huang, J.; Liu, Q.; Deepak Selvakumar, R.; Wu, J. Numerical Investigation on Electrohydrodynamic Conduction Pumping with an External Flow. Phys. Fluids 2021, 33, 12360. [Google Scholar] [CrossRef]
- Brand, K.; Seyed-Yagoobi, J. Experimental Study of Electrohydrodynamic Induction Pumping of a Dielectric Micro Liquid Film in External Horizontal Condensation Process. J. Heat Transf. Trans. ASME 2003, 125, 1096–1105. [Google Scholar] [CrossRef]
- Peng, Y.; Li, D.; Yang, X.; Ma, Z.; Mao, Z. A Review on Electrohydrodynamic (EHD) Pump. Micromachines 2023, 14, 321. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Fu, L.-M. Micropumps and Biomedical Applications—A Review. Microelectron. Eng. 2018, 195, 121–138. [Google Scholar] [CrossRef]
- Cacucciolo, V.; Shintake, J.; Kuwajima, Y.; Maeda, S.; Floreano, D.; Shea, H. Stretchable Pumps for Soft Machines. Nature 2019, 572, 516–519. [Google Scholar] [CrossRef]
- Yoon, D.H.; Sato, H.; Nakahara, A.; Sekiguchi, T.; Konishi, S.; Shoji, S. Development of an Electrohydrodynamic Ion-Drag Micropump Using Three-Dimensional Carbon Micromesh Electrodes. J. Micromech. Microeng. 2014, 24, 095003. [Google Scholar] [CrossRef]
- Liu, W.; Ren, Y.; Tao, Y.; Li, Y.; Wu, Q. On Traveling-Wave Field-Effect Flow Control for Simultaneous Induced-Charge Electroosmotic Pumping and Mixing in Microfluidics: Physical Perspectives and Theoretical Analysis. J. Micromech. Microeng. 2018, 28, 055004. [Google Scholar] [CrossRef]
- Huang, J.; Wu, J.; Yang, C.; Traore, P.; Du, Z. Numerical Study of Electro-Convection between Annular Electrodes Based on a Dissociation-Injection Mechanism. Eur. J. Mech. B-Fluids 2023, 100, 82–98. [Google Scholar] [CrossRef]
- Sharbaugh, A.H.; Walker, G.W. The Design and Evaluation of an Ion-Drag Dielectric Pump to Enhance Cooling in a Small Oil-Filled Transformer. IEEE Trans. Ind. Appl. 1985, IA-21, 950–955. [Google Scholar] [CrossRef]
- Ahn, S.H.; Kim, Y.K. Fabrication and Experiment of a Planar Micro Ion Drag Pump. Sens. Actuators Phys. 1998, 70, 1–5. [Google Scholar] [CrossRef]
- Seo, W.-S.; Yoshida, K.; Yokota, S.; Edamura, K. A High Performance Planar Pump Using Electro-Conjugate Fluid with Improved Electrode Patterns. Sens. Actuators Phys. 2007, 134, 606–614. [Google Scholar] [CrossRef]
- Smith, M.; Cacucciolo, V.; Shea, H. Fiber Pumps for Wearable Fluidic Systems. Science 2023, 379, 1327. [Google Scholar] [CrossRef]
- Nishikawara, M.; Shimada, M.; Saigo, M.; Yanada, H. Numerical Investigation of the Characteristics of an Ion Drag Pump. J. Electrost. 2016, 84, 23–31. [Google Scholar] [CrossRef]
- Gao, X.-L.; Bao, X.-D.; Pang, S.-J.; Wu, J.; Luo, K.; Yi, H.-L. The Electrohydrodynamic Enhancement of Heat Transfer on Interdigitated Electrodes by a Charge Injection Pump. Phys. Fluids 2024, 36, 033612. [Google Scholar] [CrossRef]
- Gao, X.-L.; Lu, C.; Chen, D.-L.; Wu, J.; Yi, H.-L.; Luo, K. Mechanism of Charge Injection-Based Electrohydrodynamic Pump with Interdigitated Electrodes. Phys. Fluids 2023, 35, 033610. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, Z.; Tang, Y.; Wang, X. Photo-Induced Electrostatic Actuators towards Micro Gap Regulator and Micro Gripper Based on Lead Lanthanum Zirconate Titanate Ceramics. Mater. Des. 2023, 232, 112078. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Length of channel lc | Shown in Equation (10) |
Weight of channel wc | / |
Height of channel hc | 2 mm |
Weight of electrode we | 0.5 mm |
Gap between positive and negative electrode ge | 0.5 mm |
Gap between electrode pairs gp | 1 mm |
Thickness of the ion injection field ti | 15 μm |
Pairs of electrodes N | 4 |
The length of channel end le | 5 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lv, Z.; Shao, Y.; Shi, Y.; Yao, Y.; Wang, J. Investigation on Influence Factors of Photo-Induced PLZT-Based Ion Drag Pump. Micromachines 2024, 15, 1424. https://doi.org/10.3390/mi15121424
Wang X, Lv Z, Shao Y, Shi Y, Yao Y, Wang J. Investigation on Influence Factors of Photo-Induced PLZT-Based Ion Drag Pump. Micromachines. 2024; 15(12):1424. https://doi.org/10.3390/mi15121424
Chicago/Turabian StyleWang, Xinjie, Zhen Lv, Yuming Shao, Yujie Shi, Yao Yao, and Jiong Wang. 2024. "Investigation on Influence Factors of Photo-Induced PLZT-Based Ion Drag Pump" Micromachines 15, no. 12: 1424. https://doi.org/10.3390/mi15121424
APA StyleWang, X., Lv, Z., Shao, Y., Shi, Y., Yao, Y., & Wang, J. (2024). Investigation on Influence Factors of Photo-Induced PLZT-Based Ion Drag Pump. Micromachines, 15(12), 1424. https://doi.org/10.3390/mi15121424