Development of a 3-DOF Angle Sensor Based on a Single Laser Interference Probe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wavefront Interference Principle
2.2. Pitch and Yaw Measurement Principle
2.3. Roll Measurement Principle
2.4. Basic Decoupling Algorithm
3. Results
3.1. Stability Test
3.2. Resolution Test
3.3. Range and Accuracy Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aaron, K.M.; Hashemi, A.; Morris, P.A.; Nienberg, J. Space interferometry mission thermal design. In Proceedings of the Interferometry in Space, Waikoloa, HI, USA, 26–28 August 2002; Volume 4852, pp. 49–58. [Google Scholar]
- Haugse, E.D.; Ridgway, R.I.; Hightower, C.H.; Warren, R.C. Structural Deformation Compensation System for Large Phased Array Antennas. U.S. Patent No. 6333712B1, 25 December 2001. [Google Scholar]
- Liebe, C.C.; Bauman, B.W.; Clark, G.R.; Cook, R.; Kecman, B.; Madsen, K.K.; Mao, P.; Meras, P.; Miyasaka, H.; Cooper, M.; et al. Design, qualification, calibration and alignment of position sensing detector for the NuSTAR space mission. IEEE Sens. J. 2012, 12, 2006–2013. [Google Scholar] [CrossRef]
- Gielesen, W.; de Bruijn, D.; van den Dool, T.; Kamphues, F.; Meijer, E.; Calvel, B.; Laborie, A.; Monteiro, D.; Coatantiec, C.; Touzeau, S.; et al. Gaia basic angle monitoring system. In Proceedings of the Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, Amsterdam, The Netherlands, 1–6 July 2012; Volume 8442, pp. 567–576. [Google Scholar]
- Liebe, C.C. Star trackers for attitude determination. IEEE Aerosp. Electron. Syst. Mag. 1995, 10, 10–16. [Google Scholar] [CrossRef]
- Sarvi, M.N.; Abbasi-Moghadam, D.; Abolghasemi, M.; Hoseini, H. Design and implementation of a star-tracker for LEO satellite. Optik 2020, 208, 164343. [Google Scholar] [CrossRef]
- Bao, C.; Li, J.; Feng, Q.; Zhang, B. Error-compensation model for simultaneous measurement of five degrees of freedom motion errors of a rotary axis. Meas. Sci. Technol. 2018, 29, 75004. [Google Scholar] [CrossRef]
- Li, R.; Zhen, Y.; Di, K.; Wang, W.; Nikitin, M.; Tong, M.H.; Zhang, Y.; Zou, X.; Konyakhin, I. Three-degree-of-freedom autocollimator with large angle-measurement range. Meas. Sci. Technol. 2021, 32, 115005. [Google Scholar] [CrossRef]
- SIOS. SP 5000 TR Triple Beam Laser Interferometer. 2023. Available online: https://www.sios-precision.com/en/products/length-and-angle-measurement-systems/triple-beam-laser-interferometer-sp-5000-tr (accessed on 20 September 2023).
- Hsieh, T.H.; Jywe, W.Y.; Chen, S.L.; Liu, C.H.; Huang, H.L. Note: Development of a high resolution six-degrees-of-freedom optical vibrometer for precision stage. Rev. Sci. Instrum. 2011, 82, 056101. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, M.; Ye, W.; Wang, L. Three-degrees-of-freedom laser interferometer based on differential wavefront sensing with wide angular measurement range. Appl. Opt. 2019, 58, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wu, S.; Yan, M.; Niu, H. A targetless method for simultaneously measuring three-degree-of freedom angular motion errors with digital speckle pattern interferometry. Sensors 2023, 23, 3393. [Google Scholar] [CrossRef] [PubMed]
- Automated Precision Inc. XD-6D Six-Dimensional Measurement System. 2023. Available online: https://www.apimetrology.com.cn/xd-laser/ (accessed on 20 September 2023).
- Keysight. 10735A Three Axis Interferometer. 2017. Available online: https://www.keysight.com.cn/cn/zh/product/10735A/10735a-three-axis-interferometer.html (accessed on 20 September 2023).
- Furutani, R. Displacement and angle measurement by laser interferometer with LCD. J. Phys. Conf. Series. IOP Publ. 2018, 1065, 142004. [Google Scholar] [CrossRef]
- Huang, P.; Li, Y.; Wei, H.; Ren, L.; Zhao, S. Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique. Appl. Opt. 2013, 52, 6607–6615. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Chen, I.-M.; Guo, Z.; Lang, Y.; Li, Y. A three degree-of-freedom optical orientation measurement method for spherical actuator applications. IEEE Trans. Autom. Sci. 2011, 8, 319–326. [Google Scholar] [CrossRef]
- Saito, Y.; Arai, Y.; Gao, W. Detection of three-axis angles by an optical sensor. Sens. Actuator A 2009, 150, 175–183. [Google Scholar] [CrossRef]
- Lee, C.B.; Kim, G.H.; Lee, S.K. Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage. Meas. Sci. Technol. 2011, 22, 105901. [Google Scholar] [CrossRef]
- Twyman, F. The Hilger microscope interferometer. Trans. Opt. Soc. 1923, 24, 189–208. [Google Scholar] [CrossRef]
- Strube, S.; Molnar, G.; Danzebrink, H.U. Compact field programmable gate array (FPGA)-based multi-axial interferometer for simultaneous tilt and distance measurement in the sub-nanometre range. Meas. Sci. Technol. 2011, 22, 094026. [Google Scholar] [CrossRef]
- Yu, L.; Molnar, G.; Werner, C.; Weichert, C.; Köning, R.; Danzebrink, H.U.; Tan, J.; Flügge, J. A Single-Beam 3DoF Homodyne Interferometer. Meas. Sci. Technol. 2020, 31, 084006. [Google Scholar] [CrossRef]
- Asmari, A.; Hodgkinson, J.; Chehura, E.; Staines, S.E.; Tatam, R.P. Wavelength stabilization of a DFB laser diode using measurement of junction voltage. Laser Sources Appl. II 2014, 9135, 91351A. [Google Scholar]
- Yan, L.; Chen, B.; Zhang, E.; Zhang, S.; Yang, Y. Precision measurement of refractive index of air based on laser synthetic wavelength interferometry with Edlén equation estimation. Rev. Sci. Instrum. 2015, 86, 085111. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.S.; Kim, S.W. Compensation of the refractive index of air in laser interferometer for distance measurement: A review. Int. J. Precis. Eng. Manuf. 2017, 18, 1881–1890. [Google Scholar] [CrossRef]
Deflecting Direction | Tilt Angle (Measured by Autocollimator)/μrad | Mean Value before Tilting/μrad | Mean Value after Tilting/μrad | Error between Autocollimator and Probe/μrad |
---|---|---|---|---|
Yaw | −1000.0 | 3516.7 | 2517.3 | 0.6 |
Pitch | 998.7 | 1327.9 | 2321.5 | −5.1 |
Roll | −998.7 | 24,918.2 | 23,892.1 | −2.0 |
Roll | −4998.4 | 39,104.5 | 34,133.9 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Feng, X.; Hu, P.; Lin, X.; Jing, T. Development of a 3-DOF Angle Sensor Based on a Single Laser Interference Probe. Micromachines 2023, 14, 2221. https://doi.org/10.3390/mi14122221
Yu L, Feng X, Hu P, Lin X, Jing T. Development of a 3-DOF Angle Sensor Based on a Single Laser Interference Probe. Micromachines. 2023; 14(12):2221. https://doi.org/10.3390/mi14122221
Chicago/Turabian StyleYu, Liang, Xingyang Feng, Pengcheng Hu, Xionglei Lin, and Tao Jing. 2023. "Development of a 3-DOF Angle Sensor Based on a Single Laser Interference Probe" Micromachines 14, no. 12: 2221. https://doi.org/10.3390/mi14122221
APA StyleYu, L., Feng, X., Hu, P., Lin, X., & Jing, T. (2023). Development of a 3-DOF Angle Sensor Based on a Single Laser Interference Probe. Micromachines, 14(12), 2221. https://doi.org/10.3390/mi14122221