Thermal Characterization of Rarefied Flows in Rhombic Microchannels
Abstract
:1. Introduction
2. Numerical Model
2.1. Mathematical Model
2.2. Grid Independence Analysis
2.3. Model Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karniadakis, G.; Beskok, A.; Aluru, N. Microflows and Nanoflows-Fundamentals and Simulation; Springer: New York, NY, USA, 2005. [Google Scholar]
- Sparrow, E.M.; Lin, S.H. Laminar heat transfer in tubes under slip-flow conditions. ASME J. Heat Transf. 1962, 84, 363–369. [Google Scholar] [CrossRef]
- Barron, R.F.; Wang, X.; Warrington, R.O.; Ameel, T.A. Evaluation of the eigenvalues for the Graetz problem in slip-flow. Int. Commun. Heat Mass Transf. 1996, 23, 563–574. [Google Scholar] [CrossRef]
- Barron, R.F.; Wang, X.; Ameel, T.A.; Warrington, R.O. The Graetz problem extended to slip-flow. Int. J. Heat Mass Transf. 1997, 40, 1817–1823. [Google Scholar] [CrossRef]
- Ameel, T.A.; Wang, X.; Barron, R.F.; Warrington, R.O. Laminar forced convection in a circular tube with constant heat flux and slip flow. Microscale Thermophys. Eng. 1997, 1, 303–320. [Google Scholar]
- Larrodé, F.E.; Housiadas, C.; Drossinos, Y. Slip-flow heat transfer in circular tubes. Int. J. Heat Mass Transf. 2000, 43, 2669–2680. [Google Scholar] [CrossRef]
- Zhao, H. The numerical solution of gaseous slip flows in microtubes. Int. Commun. Heat Mass Transf. 2001, 28, 585–594. [Google Scholar] [CrossRef]
- Tunc, G.; Bayazitoglu, Y. Heat transfer in microtubes with viscous dissipation. Int. J. Heat Mass Transf. 2001, 44, 2395–2403. [Google Scholar] [CrossRef]
- Aydin, O.; Avci, M. Heat and fluid flow characteristics of gases in micropipes. Int. J. Heat Mass Transf. 2006, 49, 1723–1730. [Google Scholar] [CrossRef]
- Sun, W.; Kakac, S.; Yazicioglu, A.G. A numerical study of single-phase convective heat transfer in microtubes for slip flow. Int. J. Therm. Sci. 2007, 46, 1084–1094. [Google Scholar] [CrossRef]
- Cetin, B.; Yazicioglu, A.G.; Kakac, S. Fluid flow in microtubes with axial conduction including rarefaction and viscous dissipation. Int. Commun. Heat Mass Transf. 2008, 35, 535–544. [Google Scholar] [CrossRef]
- Hong, C.; Asako, Y. Heat transfer characteristics of gaseous flows in microtube with constant heat flux. Appl. Therm. Eng. 2008, 28, 1375–1385. [Google Scholar] [CrossRef]
- Cetin, B.; Yazicioglu, A.G.; Kakac, S. Slip-flow heat transfer in microtubes with axial conduction and viscous dissipation—An extended Graetz problem. Int. J. Therm. Sci. 2009, 48, 1673–1678. [Google Scholar] [CrossRef]
- Bahrami, H.; Bergman, T.L.; Faghri, A. Forced convective heat transfer in a microtube including rarefaction, viscous dissipation and axial conduction effects. Int. J. Heat Mass Transf. 2012, 55, 6655–6675. [Google Scholar] [CrossRef]
- Liu, H.L.; Shao, X.D.; Jia, J.Y. Effects of axial heat conduction and viscous dissipation on heat transfer in circular micro-channels. Int. J. Therm. Sci. 2013, 66, 34–41. [Google Scholar] [CrossRef]
- Morini, G.L.; Spiga, M. Slip flow in rectangular microtubes. Microscale Thermophys. Eng. 1998, 2, 273–282. [Google Scholar]
- Yu, S.; Ameel, T.A. Slip-flow heat transfer in rectangular microchannels. Int. J. Heat Mass Transf. 2001, 44, 4225–4234. [Google Scholar] [CrossRef]
- Tunc, G.; Bayazitoglu, Y. Heat transfer in rectangular microchannels. Int. J. Heat Mass Transf. 2002, 45, 765–773. [Google Scholar] [CrossRef]
- Yu, S.; Ameel, T.A. Slip-flow convection in isoflux rectangular microchannels. J. Heat Transf. 2002, 124, 346–355. [Google Scholar] [CrossRef]
- Morini, G.L.; Spiga, M.; Tartarini, P. The rarefaction effect on the friction factor of gas flow in microchannels. Superlattices Microstruct. 2004, 35, 587–599. [Google Scholar] [CrossRef]
- Ghodoossi, L.; Egrican, N. Prediction of heat transfer characteristics in rectangular microchannels for slip flow regime and H1 boundary condition. Int. J. Therm. Sci. 2005, 44, 513–520. [Google Scholar] [CrossRef]
- Hettiarachchi, H.D.M.; Golubovic, M.; Worek, W.M.; Minkowycz, W.J. Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel. Int. J. Heat Mass Transf. 2006, 49, 1329–1339. [Google Scholar]
- Renksizbulut, M.; Niazmand, H.; Tercan, G. Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. Int. J. Therm. Sci. 2006, 45, 870–881. [Google Scholar] [CrossRef]
- Kuddusi, L.; Çetegen, E. Prediction of temperature distribution and Nusselt number in rectangular microchannels at wall slip condition for all versions of constant heat flux. Int. J. Heat Fluid Flow 2007, 28, 777–786. [Google Scholar] [CrossRef]
- Hettiarachchi, H.D.M.; Golubovic, M.; Worek, W.M.; Minkowycz, W.J. Threedimensional laminar slip-flow and heat transfer in a rectangular microchannel with constant wall temperature. Int. J. Heat Mass Transf. 2008, 51, 5088–5096. [Google Scholar] [CrossRef]
- Hooman, K. Heat transfer and entropy generation for forced convection through a microduct of rectangular cross-section: Effects of velocity slip, temperature jump, and duct geometry. Int. Commun. Heat Mass Transf. 2008, 35, 1065–1068. [Google Scholar] [CrossRef]
- van Rij, J.; Ameel, T.; Harman, T. The effect of viscous dissipation and rarefaction on rectangular microchannel convective heat transfer. Int. J. Therm. Sci. 2009, 48, 271–281. [Google Scholar] [CrossRef]
- Cao, B.; Chen, G.W.; Yuan, Q. Fully developed laminar flow and heat transfer in smooth trapezoidal microchannel. Int. Commun. Heat Mass Transf. 2005, 32, 1211–1220. [Google Scholar] [CrossRef]
- Kuddusi, L.; Çetegen, E. Thermal and hydrodynamic analysis of gaseous flow in trapezoidal silicon microchannels. Int. J. Therm. Sci. 2009, 48, 353–362. [Google Scholar] [CrossRef]
- Niazmand, H.; Renksizbulut, M.; Saeedi, E. Developing slip-flow and heat transfer in trapezoidal microchannels. Int. J. Heat Mass Transf. 2008, 51, 6126–6135. [Google Scholar] [CrossRef]
- Kuddusi, L. First and second law analysis of fully developed gaseous slip flow in trapezoidal silicon microchannels considering viscous dissipation effect. Int. J. Heat Mass Transf. 2011, 54, 52–64. [Google Scholar] [CrossRef]
- Zhu, X.; Liao, Q.; Xin, M. Analysis of the heat transfer in unsymmetrically heated triangular microchannels in slip flow regime. Sci. China Ser. E Technol. Sci. 2004, 47, 436–446. [Google Scholar] [CrossRef]
- Vocale, P.; Morini, G.L.; Spiga, M. Dilute gas flows through elliptic microchannels under H2 boundary conditions. Int. J. Heat Mass Transf. 2014, 71, 376–385. [Google Scholar] [CrossRef]
- Lee, D.-K.; Kwon, J.Y.; Cho, Y.H. Fabrication of microfluidic channels with various cross-sectional shapes using anisotropic etching of Si and self-alignment. Appl. Phys A-Mater. 2019, 125, 291. [Google Scholar] [CrossRef]
- Bahrami, M.; Michael Yovanovich, M.; Richard Culham, J. A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section. Int. J. Heat Mass. Tran. 2007, 50, 2492. [Google Scholar] [CrossRef]
- Tamayol, A.; Bahrami, M. Laminar flow in microchannels with Noncircular Cross Section. J. Fluid Eng-T. ASME 2010, 132, 111201. [Google Scholar] [CrossRef]
- Shahsavari, S.; Tamayol, A.; Kjeang, E.; Bahrami, M. Convective Heat Transfer in Microchannels of Noncircular Cross Sections: An Analytical Approach. ASME J. Heat Transf. 2012, 134, 91701. [Google Scholar] [CrossRef]
- Saha, S.K.; Agrawal, A.; Soni, Y. Heat transfer characterization of rhombic microchannel for H1 and H2 boundary conditions. Int. J. Therm Sci. 2017, 111, 223. [Google Scholar] [CrossRef]
- Tamayol, A.; Hooman, K. Slip-Flow in Microchannels of Non-Circular Cross Sections. J. Fluid Eng-T Asme 2011, 133, 091202. [Google Scholar] [CrossRef]
- Shams, M.; Shojaeian, M.; Aghanajafi, C.; Dibaji, S.A.R. Numerical simulation of slip flow through rhombus microchannels. Int. Commun. Heat Mass. 2009, 36, 1075. [Google Scholar] [CrossRef]
- Baghani, M.; Sadeghi, A. Gaseous Slip Flow Forced Convection in Microducts of Arbitrary but Constant Cross Section. Nanosc. Microsc. Therm. 2014, 18, 354. [Google Scholar] [CrossRef]
- Shah, R.K.; London, A.L. Laminar Flow Forced Convection in Ducts; Academic Press: New York, NY, USA, 1978; Chapter X. [Google Scholar]
- Lu, K.; Wang, C.; Wang, C.; Fan, X.; Qi, F.; He, H. Topological structures for microchannel heat sink applications—A review. Manuf. Rev. 2023, 10, 480–490. [Google Scholar] [CrossRef]
- Rezk, K.; Abdelrahman, M.A.; Attia, A.A.A.; Emam, M. Thermal control of temperature-sensitive electronic components using a vapor chamber integrated with a straight fins heat sink: An experimental investigation. App. Ther. Eng. 2022, 217, 119147. [Google Scholar] [CrossRef]
- Quesada, G.L.; Tatsios, G.; Valougeorgis, D.; Rojas-Cárdenas, M.; Baldas, L.; Barrot, C.; Colin, S. Design guidelines for thermally driven micropumps of different architectures based on target applications via kinetic modeling and simulations. Micromachines 2019, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- COMSOL Multiphysics. Reference Manual. 2023. Available online: https://doc.comsol.com/6.1/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf (accessed on 1 October 2023).
φ | Nunum | Nu [42] |
---|---|---|
10 | 0.068 | 0.070 |
20 | 0.277 | 0.279 |
30 | 0.624 | 0.624 |
40 | 1.090 | 1.090 |
45 | 1.355 | 1.340 |
50 | 1.630 | 1.620 |
60 | 2.177 | 2.160 |
70 | 2.651 | 2.640 |
80 | 2.973 | 2.970 |
90 | 3.087 | 3.090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vocale, P.; Morini, G.L. Thermal Characterization of Rarefied Flows in Rhombic Microchannels. Micromachines 2023, 14, 2222. https://doi.org/10.3390/mi14122222
Vocale P, Morini GL. Thermal Characterization of Rarefied Flows in Rhombic Microchannels. Micromachines. 2023; 14(12):2222. https://doi.org/10.3390/mi14122222
Chicago/Turabian StyleVocale, Pamela, and Gian Luca Morini. 2023. "Thermal Characterization of Rarefied Flows in Rhombic Microchannels" Micromachines 14, no. 12: 2222. https://doi.org/10.3390/mi14122222
APA StyleVocale, P., & Morini, G. L. (2023). Thermal Characterization of Rarefied Flows in Rhombic Microchannels. Micromachines, 14(12), 2222. https://doi.org/10.3390/mi14122222