Quality Factor Improvement of a Thin-Film Piezoelectric-on-Silicon Resonator Using a Radial Alternating Material Phononic Crystal
Abstract
:1. Introduction
2. Phononic Crystal and the Theory of Wave Propagation
2.1. Phononic Crystal Structure and Band Gap Calculation
2.2. Band Gap Optimization of Phononic Crystals
2.3. Transmission Characteristic
3. The Design of TPOS Resonator
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsutsumi, J.; Seth, M.; Morris, A.S., III; Staszewski, R.B.; Hueber, G. Cost-Efficient, High-Volume Transmission. IEEE Microw. Mag. 2015, 16, 26–45. [Google Scholar] [CrossRef]
- Workie, T.B.; Wu, Z.; Tang, P.; Bao, J.; Hashimoto, K.Y. Figure of Merit Enhancement of Laterally Vibrating RF-MEMS Resonators via Energy-Preserving Addendum Frame. Micromachines 2022, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Piazza, G.; Stephanou, P.J.; Pisano, A.P. Piezoelectric Aluminum Nitride Vibrating Contour-Mode MEMS Resonators. J. Microelectromech. Syst. 2006, 15, 1406–1418. [Google Scholar] [CrossRef]
- Awad, M.; Workie, T.B.; Bao, J.; Hashimoto, K.-Y. Nonconventional Tether Structure for Quality Factor Enhancement of Thin-Film-Piezoelectric-on-Si MEMS Resonator. Micromachines 2023, 14, 1965. [Google Scholar] [CrossRef] [PubMed]
- Harrington, B.P.; Abdolvand, R. In-plane acoustic reflectors for reducing effective anchor loss in lateral–extensional MEMS resonators. J. Micromech. Microeng. 2011, 21, 085021. [Google Scholar] [CrossRef]
- Tu, C.; Lee, J.E.-Y. VHF-band biconvex AlN-on-silicon micromechanical resonators with enhanced quality factor and suppressed spurious modes. J. Micromech. Microeng. 2016, 26, 065012. [Google Scholar] [CrossRef]
- Tu, C.; Lee, J.E.-Y. Enhancing quality factor by etch holes in piezoelectric-on-silicon lateral mode resonators. Sens. Actuators A Phys. 2017, 259, 144–151. [Google Scholar] [CrossRef]
- Zou, J.; Lin, C.-M.; Tang, G.; Pisano, A.P. High-Q butterfly-shaped AlN Lamb wave resonators. IEEE Electron Device Lett. 2017, 38, 1739–1742. [Google Scholar] [CrossRef]
- Zhu, H.; Lee, J.E.Y. AlN piezoelectric on silicon MEMS resonator with boosted Q using planar patterned phononic crystals on anchors. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 797–800. [Google Scholar]
- Binci, L.; Tu, C.; Zhu, H.; Lee, E.Y. Planar ring-shaped phononic crystal anchoring boundaries for enhancing the quality factor of lamb mode resonators. Appl. Phys. Lett. 2016, 109, 203501. [Google Scholar] [CrossRef]
- Siddiqi, M.W.U.; Lee, J.E. Wide Acoustic Bandgap Solid Disk-Shaped Phononic Crystal Anchoring Boundaries for Enhancing Quality Factor in AlN-on-Si MEMS Resonators. Micromachines 2018, 9, 413. [Google Scholar] [CrossRef]
- Lu, R.; Manzaneque, T.; Yang, Y.; Gong, S. Lithium Niobate Phononic Crystals for Tailoring Performance of RF Laterally Vibrating Devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Bao, F.-H.; Wu, X.-Q.; Zhou, X.; Wu, Q.-D.; Zhang, X.-S.; Bao, J.-F. Spider web-like phononic crystals for piezoelectric MEMS resonators to reduce acoustic energy dissipation. Micromachines 2019, 10, 626. [Google Scholar] [CrossRef] [PubMed]
- Bao, F.H.; Bao, L.L.; Li, X.Y.; Khan, M.A.; Wu, H.Y.; Qin, F.; Zhang, T.; Zhang, Y.; Bao, J.F.; Zhang, X.S. Multi-stage phononic crystal structure for anchor-loss reduction of thin-film piezoelectric-on-silicon microelectromechanical-system resonator. Appl. Phys. Express 2018, 11, 067201. [Google Scholar] [CrossRef]
- Bao, F.H.; Bao, J.F.; Lee, J.E.Y.; Bao, L.L.; Khan, M.A.; Zhou, X.; Wu, Q.D.; Zhang, T.; Zhang, X.S. Quality factor improvement of piezoelectric MEMS resonator by the conjunction of frame structure and phononic crystals. Sens. Actuators A Phys. 2019, 297, 111541. [Google Scholar] [CrossRef]
- Workie, T.B.; Liu, J.; Wu, Z.; Tang, P.; Bao, J.-F.; Hashimoto, K.-Y. Swastika Hole shaped Phononic Crystal for Quality enhancement of Contour Mode Resonators. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
- Ha, T.D.; Bao, J. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics. AIP Adv. 2016, 6, 045211. [Google Scholar] [CrossRef]
- Awad, M.; Workie, T.B.; Bao, J.-F.; Hashimoto, K.-Y. Reem-Shape Phononic Crystal for Q Anchor Enhancement of Thin-Film-Piezoelectric-on-Si MEMS Resonator. Micromachines 2023, 14, 1540. [Google Scholar] [CrossRef]
- Ha, T.D.; Bao, J. Reducing anchor loss in thin-film aluminum nitride-on-diamond contour mode MEMS resonators with support tethers based on phononic crystal strip and reflector. Microsyst. Technol. 2016, 22, 791–800. [Google Scholar] [CrossRef]
- Rawat, U.; Nair, D.R.; DasGupta, A. Piezoelectric-on-Silicon array resonators with asymmetric phononic crystal tethering. J. Microelectromech. Syst. 2017, 26, 773–781. [Google Scholar] [CrossRef]
- Khan, M.A.; Bao, J.-F.; Bao, F.-H.; Zhou, X. Concentric Split Aluminum with Silicon-Aluminum Nitride Annular Rings Resonators. Micromachines 2019, 10, 296. [Google Scholar] [CrossRef]
- Bao, J.; Workie, T.B.; Hashimoto, K.Y. Performance improvement of RF acoustic wave resonators using phononic crystals. In Proceedings of the 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou, China, 27–29 November 2022; pp. 1–2. [Google Scholar]
- Liu, J.; Workie, T.B.; Wu, Z.; Tang, P.; Bao, J.F.; Hashimoto, K.Y. Acoustic Reflectors for Anchor Loss Reduction of Thin Film Piezoelectric on Substrate Resonators. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
- Chen, P.J.; Workie, T.B.; Feng, J.J.; Bao, J.F.; Hashimoto, K.Y. Four-Leaf Clover Shaped Phononic Crystals for Quality Factor Improvement of AlN Contour Mode Resonator. In Proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022; pp. 1–3. [Google Scholar]
- Workie, T.B.; Wu, T.; Bao, J.F.; Hashimoto, K.Y. Design for the high-quality factor of piezoelectric-on-silicon MEMS resonators using resonant plate shape and phononic crystals. Jpn. J. Appl. Phys. 2021, 60, SDDA03. [Google Scholar] [CrossRef]
- Liu, J.; Workie, T.B.; Wu, T.; Wu, Z.; Gong, K.; Bao, J.; Hashimoto, K.-Y. Q-Factor Enhancement of Thin-Film Piezoelectric-on-Silicon MEMS Resonator by Phononic Crystal-Reflector Composite Structure. Micromachines 2020, 11, 1130. [Google Scholar] [CrossRef] [PubMed]
- Workie, T.B.; Wu, T.; Bao, J.; Hashimoto, K. Q-Factor Enhancement of MEMS Resonators with Ditetragonal Prism Shaped Phononic Crystal (DTP-PnC); USE: Osaka, Japan, 2020; Volume 41, p. 2E5-2. Available online: https://www.use-dl.org/2020/proceedings/pdf/2E5-2.pdf (accessed on 20 November 2023).
- Khelif, A.; Adibi, A. Phononic Crystals: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Torrent, D.; Sánchez-Dehesa, J. Radial wave crystals: Radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves. J. Phys. Rev. Lett. 2009, 103, 064301. [Google Scholar] [CrossRef] [PubMed]
- Torrent, D.; Sánchez-Dehesa, J. Acoustic resonances in two-dimensional radial sonic crystal shells. New J. Phys. 2010, 12, 073034. [Google Scholar] [CrossRef]
- Spiousas, I.; Torrent, D.; Sanchez-Dehesa, J. Experimental realization of broadband tunable resonators based on anisotropic metafluids. Appl. Phys. Lett. 2011, 98, 452. [Google Scholar] [CrossRef]
- Li, Y.; Chen, T.; Wang, X.; Yu, K.; Chen, W. Propagation of Lamb waves in one-dimensional radial phononic crystal plates with periodic corrugations. J. Appl. Phys. 2014, 115, 054907. [Google Scholar] [CrossRef]
- Ma, T.; Chen, T.; Wang, X.; Li, Y.; Wang, P. Band structures of bilayer radial phononic crystal plate with crystal gliding. J. Appl. Phys. 2014, 116, 104505. [Google Scholar] [CrossRef]
- Shu, H.S.; Wang, X.G.; Liu, R.; Li, X.G.; Shi, X.N.; Liang, S.J.; Xu, L.H.; Dong, F.Z. Bandgap analysis of cylindrical shells of generalized phononic crystals by transfer matrix method. Int. J. Mod. Phys. B 2015, 29, 1550176. [Google Scholar] [CrossRef]
- Shi, X.; Shu, H.; Zhu, J.; Wang, X.; Dong, L.; Zhao, L.; Liang, S.; Liu, R. Research on wave bandgaps in a circular plate of radial phononic crystal. Int. J. Mod. Phys. B 2016, 30, 1650162. [Google Scholar] [CrossRef]
- An, S.; Shu, H.; Liang, S.; Shi, X.; Zhao, L. Band gap characteristics of radial wave in a two-dimensional cylindrical shell with radial and circumferential periodicities. AIP Adv. 2018, 8, 035110. [Google Scholar] [CrossRef]
Parameter Name (Abbreviated) | Value |
---|---|
Young’s modulus (E) | Ex = Ey = 169 GPa, Ez = 130 GPa |
Poisson’s ratio (σ) Shear modulus (G) Density (ρ) | σxy = 0.064, σyz = 0.36, σzx = 0.28 Gz = 50.9 GPa, Gx = Gy = 79.6 GPa 2330 kg/m3 |
Materials | W | Al | Ag | Pt | Cu | Au |
---|---|---|---|---|---|---|
Density (g/cm2) | 18.7 | 2.7 | 10.5 | 21.4 | 8.94 | 19.32 |
Longitudinal velocity (cm/s) × 102 | 5.23 | 6.32 | 3.6 | 3.96 | 4.65 | 3.24 |
Acoustic impedance (g/cm2 s) | 97.86 | 17.1 | 37.8 | 84.74 | 41.55 | 62.6 |
Parameters | Values (Unit) |
---|---|
Simulated resonant frequency (f0) | 175 (MHz) |
Wavelength (λ) | 47.9 (µm) |
Inter digitated transducer (IDT) finger (n) | 9 |
Tethers width (Wt) | 15 (µm) |
Tethers length (Lt) | 47.9 (µm) |
Electrode gap (Ge) | 4 (µm) |
Resonator width (Wr) | 215.55 (µm) |
Resonator length (Lr) | 646.65 (µm) |
Thickness of Al (TAl) | 0.5 (µm) |
Thickness of AlN (TAlN) | 0.1 (µm) |
Height of Si substrate (HS) | 10 (µm) |
Parameters | Traditional | RAM-PnC |
Resonant frequency (fr), MHz | 175.14 | 175.14 |
Insertion loss (IL), dB | 6.2 | 5.1 |
Motional resistance (Rm), Ω | 6.45 | 0.08 |
Coupling coefficient (K2eff), % | 0.0228 | 0.0228 |
Qanchor | 60,596 | 659,536,011 |
Loaded quality factor (Ql) | 8146 | 9467 |
Unloaded quality factor (Qu) | 15,966 | 21,317 |
FOM | 8.3 | 11.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Su, M.; Workie, T.B.; Tang, P.; Ye, C.; Bao, J.-F. Quality Factor Improvement of a Thin-Film Piezoelectric-on-Silicon Resonator Using a Radial Alternating Material Phononic Crystal. Micromachines 2023, 14, 2241. https://doi.org/10.3390/mi14122241
Zhu C, Su M, Workie TB, Tang P, Ye C, Bao J-F. Quality Factor Improvement of a Thin-Film Piezoelectric-on-Silicon Resonator Using a Radial Alternating Material Phononic Crystal. Micromachines. 2023; 14(12):2241. https://doi.org/10.3390/mi14122241
Chicago/Turabian StyleZhu, Chuang, Muxiang Su, Temesgen Bailie Workie, Panliang Tang, Changyu Ye, and Jing-Fu Bao. 2023. "Quality Factor Improvement of a Thin-Film Piezoelectric-on-Silicon Resonator Using a Radial Alternating Material Phononic Crystal" Micromachines 14, no. 12: 2241. https://doi.org/10.3390/mi14122241
APA StyleZhu, C., Su, M., Workie, T. B., Tang, P., Ye, C., & Bao, J. -F. (2023). Quality Factor Improvement of a Thin-Film Piezoelectric-on-Silicon Resonator Using a Radial Alternating Material Phononic Crystal. Micromachines, 14(12), 2241. https://doi.org/10.3390/mi14122241