Single-Cell Microarray Chip with Inverse-Tapered Wells to Maintain High Ratio of Cell Trapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of Single-Cell Microarray Chip
2.2. Fabrication of SCM Chip
2.3. Cell Culture and Concentration Tuning of Cell Suspension
2.4. Cell Trapping Test
3. Results and Discussion
3.1. Characterization of SCM Chip
3.2. Cell Trapping Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graf, T.; Stadtfeld, M. Heterogeneity of embryonic and adult stem cells. Cell Stem Cell 2008, 3, 480–483. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, S.; Purohit, P.; Misra, R.; Lingeswaran, M.; Vishnoi, J.R.; Pareek, P.; Misra, S.; Sharma, P. Single cell omics of breast cancer: An update on characterization and diagnosis. Indian J. Clin. Biochem. 2019, 34, 3–18. [Google Scholar] [CrossRef]
- Qi, F.; Qian, S.; Zhang, S.; Zhang, Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. 2020, 526, 135–140. [Google Scholar] [CrossRef]
- Hatsuzawa, T.; Kurosaka, M. A cell culture device equipped with a micro-needle electrode array fabricated using backside exposure mold and resin casting. Biomed. Microdevices 2018, 20, 58. [Google Scholar] [CrossRef] [PubMed]
- Izar, B.; Tirosh, I.; Stover, E.H.; Wakiro, I.; Cuoco, M.S.; Alter, I.; Rodman, C.; Leeson, R.; Su, M.J.; Shah, P.; et al. A single-cell landscape of high-grade serous ovarian cancers. Nat. Med. 2020, 26, 1271–1279. [Google Scholar] [CrossRef]
- Corbin, E.A.; Adeniba, O.O.; Cangellaris, O.V.; King, W.P.; Bashir, R. Evidence of differential mass change rates between human breast cancer cell lines in culture. Biomed. Microdevices 2017, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.A.M.; Mita, D.; Espulgar, W.; Saito, M.; Nishide, M.; Takamatsu, H.; Yoshikawa, H.; Tamiya, E. Single cell analysis of neutrophils NETs by microscopic LSPR imaging system. Micromachines 2020, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.H.; Chen, C.H.; Tsai, F.S.; Godin, J.M.; Lo, Y.H. Human mammalian cell sorting using a highly integrated microfabricated fluorescence-activated cell sorter (micro FACS). Lab Chip 2010, 10, 1567–1573. [Google Scholar] [CrossRef] [Green Version]
- Gross, A.; Schoendube, J.; Zimmermann, S.; Steeb, M.; Zengerle, R.; Koltay, P. Technologies for single-cell isolation. Int. J. Mol. Sci. 2015, 16, 16897–16919. [Google Scholar] [CrossRef] [Green Version]
- Corselli, M.; Crisan, M.; Murray, I.R.; West, C.C.; Scholes, J.; Codrea, F.; Khan, N.; Péault, B. Identification of perivascular mesenchymal stromal/stem cells by flow cytometry. Cytom. A 2013, 83, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Fan, L.; Zhu, R.; Sun, D. Microfluidic single-cell manipulation and analysis: Methods and applications. Micromachines 2019, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Hochstetter, A. Lab-on-a-chip technologies for the single cell level: Separation, analysis, and diagnostics. Micromachines 2020, 11, 468. [Google Scholar] [CrossRef]
- Xu, M.; Liu, W.; Zou, K.; Wei, S.; Zhang, X.; Li, E.; Wang, Q. Design and clinical application of an integrated microfluidic device for circulating tumor cells isolation and single-cell analysis. Micromachines 2021, 12, 49. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Wang, Y.; Piper, J.; Jiang, L. Improving single-cell encapsulation efficiency and reliability through neutral buoyancy of suspension. Micromachines 2020, 11, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Wu, H.; Wen, H.; Zheng, B. Advances in single-cell printing. Micromachines 2022, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, S.; Kishi, H.; Tokimitsu, Y.; Kondo, S.; Honda, R.; Rao, S.R.; Omori, M.; Tamiya, E.; Muraguchi, A. Single-cell microarray for analyzing cellular response. Anal. Chem. 2005, 77, 8050–8056. [Google Scholar] [CrossRef] [PubMed]
- Keloth, A.; Anderson, O.; Risbridger, D.; Paterson, L. Single cell isolation using optical tweezers. Micromachines 2018, 9, 434. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Komori, T.; Uda, T.; Miyajima, K.; Fujii, T.; Kim, S.H. Sequential cell-processing system by integrating hydrodynamic purification and dielectrophoretic trapping for analyses of suspended cancer cells. Micromachines 2020, 11, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghian, H.; Hojjat, Y.; Soleimani, M. Interdigitated electrode design and optimization for dielectrophoresis cell separation actuators. J. Electrostat. 2017, 86, 41–49. [Google Scholar] [CrossRef]
- Gascoyne, P.R.; Vykoukal, J. Particle separation by dielectrophoresis. Electrophoresis 2002, 23, 1973–1983. [Google Scholar] [CrossRef]
- Lenshof, A.; Evander, M.; Laurell, T.; Nilsson, J. Acoustofluidics 5: Building microfluidic acoustic resonators. Lab Chip 2012, 12, 684–695. [Google Scholar] [CrossRef]
- Guo, F.; Mao, Z.; Chen, Y.; Xie, Z.; Lata, J.P.; Li, P.; Ren, L.; Liu, J.; Yang, J.; Dao, M.; et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl Acad. Sci. USA 2016, 113, 1522–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiriet, P.E.; Pezoldt, J.; Gambardella, G.; Keim, K.; Deplancke, B.; Guiducci, C. Selective retrieval of individual cells from microfluidic arrays combining dielectrophoretic force and directed hydrodynamic flow. Micromachines 2020, 11, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Morgan, H. Single-cell microfluidic impedance cytometry; a review. Microfluid. Nanofluid. 2010, 8, 423–443. [Google Scholar] [CrossRef]
- El-Ali, J.; Sorger, P.K.; Jensen, K.F. Cells on chips. Nature 2006, 442, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Rettig, J.R.; Folch, A. Large-Scale single-cell trapping and imaging using microwell arrays. Anal. Chem. 2005, 77, 5628–5634. [Google Scholar] [CrossRef]
- Yatsushiro, S.; Yamamoto, T.; Yamamura, S.; Abe, K.; Obana, E.; Nogami, T.; Hayashi, T.; Sesei, T.; Oka, H.; Okello-Onen, J.; et al. Application of a cell microarray chip system for accurate, highly sensitive, and rapid diagnosis for malaria in Uganda. Sci. Rep. 2016, 6, 30136. [Google Scholar] [CrossRef] [Green Version]
- Desalvo, A.; Bateman, F.; James, E.; Morgan, H.; Elliott, T. Time-resolved microwell cell-pairing array reveals multiple T cell activation profiles. Lab Chip 2020, 20, 3772–3783. [Google Scholar] [CrossRef]
- Manzoor, A.A.; Romita, L.; Hwang, D.K. A review on microwell and microfluidic geometric array fabrication techniques and its potential applications in cellular studies. Can. J. Chem. Eng. 2021, 99, 61–96. [Google Scholar] [CrossRef]
- Park, J.Y.; Morgan, M.; Sachs, A.N.; Samorezov, J.; Teller, R.; Shen, Y.; Pienta, K.J.; Takayama, S. Single cell trapping in larger microwells capable of supporting cell spreading and proliferation. Microfluid. Nanofluid. 2010, 8, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Shigeto, H.; Yamada, E.; Kitamatsu, M.; Ohtsuki, T.; Iizuka, A.; Akiyama, Y.; Yamamura, S. Analysis of single nucleotide-mutated single-cancer cells using the combined technologies of single-cell microarray chips and peptide nucleic acid-DNA probes. Micromachines 2020, 11, 628. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, T.; Furuya, N.; Shimagami, T.; Sato, R.; Shimokawa, F.; Akimitsu, K.; Suzuki, T. Development of micro-inclined well array for trapping single cells. Electron. Commun. Jpn. 2018, 101, 45–50. [Google Scholar] [CrossRef]
- Suzuki, T.; Kotera, H.; Kanno, I.; Hiramaru, D. Method for Producing Microstructure. U.S. Patent 8,871,433, 28 October 2014. [Google Scholar]
- Perche, P.Y.; Vourc’h, C.; Konecny, L.; Souchier, C.; Robert-Nicoud, M.; Dimitrov, S.; Khochbin, S. Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr. Biol. 2000, 10, 1531–1534. [Google Scholar] [CrossRef] [Green Version]
- Kimura, H.; Cook, P.R. Kinetics of core histones in living human cells: Little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 2001, 153, 1341–1353. [Google Scholar] [CrossRef]
- Kanda, T.; Sullivan, K.F.; Wahl, G.M. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 1998, 8, 377–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Opening Diameter [μm] | Concentration of Cell Suspension [/μL] |
---|---|
10 | 2.25 × 103 |
15 | 1.00 × 103 |
20 | 0.56 × 103 |
Design Value ϕ [μm] | Measured Value ϕ [μm] | SD [μm] |
---|---|---|
10 | 10.4 | 0.4 |
15 | 15.7 | 0.4 |
20 | 20.7 | 0.6 |
Design Value θ [°] | Measured Value θ [°] | SD [°] |
---|---|---|
0 | 1.0 | 0.2 |
10 | 8.8 | 0.3 |
20 | 18 | 0.6 |
30 | 27 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sano, R.; Koyama, K.; Fukuoka, N.; Ueno, H.; Yamamura, S.; Suzuki, T. Single-Cell Microarray Chip with Inverse-Tapered Wells to Maintain High Ratio of Cell Trapping. Micromachines 2023, 14, 492. https://doi.org/10.3390/mi14020492
Sano R, Koyama K, Fukuoka N, Ueno H, Yamamura S, Suzuki T. Single-Cell Microarray Chip with Inverse-Tapered Wells to Maintain High Ratio of Cell Trapping. Micromachines. 2023; 14(2):492. https://doi.org/10.3390/mi14020492
Chicago/Turabian StyleSano, Ryota, Kentaro Koyama, Narumi Fukuoka, Hidetaka Ueno, Shohei Yamamura, and Takaaki Suzuki. 2023. "Single-Cell Microarray Chip with Inverse-Tapered Wells to Maintain High Ratio of Cell Trapping" Micromachines 14, no. 2: 492. https://doi.org/10.3390/mi14020492
APA StyleSano, R., Koyama, K., Fukuoka, N., Ueno, H., Yamamura, S., & Suzuki, T. (2023). Single-Cell Microarray Chip with Inverse-Tapered Wells to Maintain High Ratio of Cell Trapping. Micromachines, 14(2), 492. https://doi.org/10.3390/mi14020492