Prediction of Single-Event Effects in FDSOI Devices Based on Deep Learning
Abstract
:1. Introduction
2. Experimental
2.1. Device Structure
2.2. Dataset
2.3. Deep Neural Network Prediction of Drain Transient Current Pulse
2.4. Deep Neural Network Prediction of Drain Transient Current Peak and Total Collected Charge
3. Results and Discussion
3.1. Results on Prediction of Ddrain Transient Current Pulse
3.2. Results on the Prediction of Drain Transient Current Peak and Total Collected Charge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calienes, W.; Vladimirescu, A.; Reis, R. Simulation of Single-Event Effects on Fully Depleted Silicon—On—Insulator (FDSOI) CMOS. In Semiconductor Devices in Harsh Conditions; CRC Press: Boca Raton, FL, USA, 2016; pp. 43–68. [Google Scholar]
- RLiu, R.; Ferlet-Cavrois, V.; Evans, A.; Chen, L.; Li, Y.; Glorieux, M.; Wong, R.; Wen, S.-J.; Cunha, J.; Summerer, L. Single Event Transient and TID Study in 28 nm UTBB FDSOI Technology. IEEE Trans. Nucl. Sci. 2017, 64, 113–118. [Google Scholar] [CrossRef]
- Planes, N.; Weber, O.; Barral, V.; Haendler, S.; Noblet, D.; Croain, D.; Haond, M. 28 nm FDSOI technology platform for high-speed low-voltage digital applications. In Proceedings of the 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; pp. 133–134. [Google Scholar] [CrossRef]
- Fenouillet-Beranger, C.; Denorme, S.; Perreau, P.; Buj, C.; Faynot, O.; Andrieu, F.; Skotnicki, T. FDSOI devices with thin BOX and ground plane integration for 32nm node and below. Solid-State Electron. 2008, 53, 206–209. [Google Scholar] [CrossRef]
- Peng, C.; Lei, Z.; Zhang, Z.; En, Y.; Huang, Y. Investigating Neutron-Induced Single Event Transient Characteristics by TCAD Simulations in 65 nm Technology and Below. In Proceedings of the 2019 3rd International Conference on Radiation Effects of Electronic Devices (ICREED), Chongqing, China, 29–31 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Bartra, W.C.; Vladimirescu, A.; Reis, R. Process and temperature impact on single-event transients in 28nm FDSOI CMOS. In Proceedings of the 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS), Bariloche, Argentina, 20–23 February 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Gouker, P.M.; Gadlage, M.J.; McMorrow, D.; McMarr, P.; Hughes, H.; Wyatt, P.; Keast, C.; Bhuva, B.L.; Narasimham, B. Effects of Ionizing Radiation on Digital Single Event Transients in a 180-nm Fully Depleted SOI Process. IEEE Trans. Nucl. Sci. 2009, 56, 3477–3482. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, H.; Wang, S.; Chen, S. TCAD Simulation of Single-Event-Transient Effects in L-Shaped Channel Tunneling Field-Effect Transistors. IEEE Trans. Nucl. Sci. 2018, 65, 2250–2259. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, S.D.; Cheng, K.; Jiang, Y.; Zhou, J.; Tang, F.; Zhou, X.C.; Gan, P. Improving breakdown performance for novel LDMOS using n + floating islands in substrate. Electron. Lett. 2016, 52, 658–659. [Google Scholar] [CrossRef]
- Zeng, K.; Vaidya, A.; Singisetti, U. 1.85 kV Breakdown Voltage in Lateral Field-Plated Ga2O3 MOSFETs. IEEE Electron Device Lett. 2018, 39, 1385–1388. [Google Scholar] [CrossRef]
- Bi, J.; Li, B.; Han, Z.; Luo, J.; Chen, L.; Lin-Shi, X. 3D TCAD simulation of single-event-effect in n-channel transistor based on deep sub-micron fully-depleted silicon-on-insulator technology. In Proceedings of the 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China, 28–31 October 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Ni, T.; Guo, B.; Yang, C. Design of Ultrasonic Testing System for Defects of Composite Material Bonding Structure Based on Deep Learning Technology. In Proceedings of the 2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), Zhangjiajie, China, 18–19 July 2020; pp. 263–266. [Google Scholar] [CrossRef]
- Mun, J.; Jeong, J. Design and Analysis of Optimal Recipe Prediction Model Based on Deep Learning for Advanced Composite Material Injection Molding. In Proceedings of the 2021 International Conference on Computer Communication and Artificial Intelligence (CCAI), Guangzhou, China, 7–9 May 2021; pp. 176–179. [Google Scholar] [CrossRef]
- Chen, Q.; Shao, T.; Xing, Y.; Zhou, Z. Machine Learning-Based Damage Predicion Method for the Micro/Nano Structures Fabricated by Helium Focused Ion Beam. In Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–24 June 2021; pp. 1052–1055. [Google Scholar] [CrossRef]
- Tang, Y.; Kojima, K.; Koike-Akino, T.; Wang, Y.; Jha, D.K.; Parsons, K.; Qi, M. Nano-Optic Broadband Power Splitter Design via Cycle-Consistent Adversarial Deep Learning. In Proceedings of the 2021 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 9–14 May 2021; pp. 1–2. [Google Scholar]
- Li, C.; Yang, Y.; Liang, H.; Wu, B. Learning Quantum Drift-Diffusion Phenomenon by Physics-Constraint Machine Learning. IEEE/ACM Trans. Netw. 2022, 30, 2090–2101. [Google Scholar] [CrossRef]
- Chen, J.; Alawieh, M.B.; Lin, Y.; Zhang, M.; Zhang, J.; Guo, Y.; Pan, D.Z. Powernet: SOI Lateral Power Device Breakdown Prediction With Deep Neural Networks. IEEE Access 2020, 8, 25372–25382. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Y.; Lin, Y.; Alawieh, M.B.; Zhang, M.; Zhang, J.; Pan, D.Z. Breakdown Voltage Prediction of SOI Lateral Power Device Using Deep Neural Network. In Proceedings of the 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 18–21 July 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Mehta, K.; Wong, H.-Y. Prediction of FinFET Current-Voltage and Capacitance-Voltage Curves Using Machine Learning With Autoencoder. IEEE Electron Device Lett. 2021, 42, 136–139. [Google Scholar] [CrossRef]
- Alan, M.; Aküner, M.C.; Kepez, A. Biosignal Classification and Disease Prediction with Deep Learning. In Proceedings of the 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey, 15–17 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Nadell, C.C.; Huang, B.; Malof, J.M.; Padilla, W.J. Deep learning for accelerated all-dielectric metasurface design. Opt. Express 2019, 27, 27523–27535. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, R.; Huang, Q.; Liu, Z.; Wang, T.; Shi, Y.; Li, X. Analysis of single-event effects in selected BOX-based FDSOI transistor and inverter. Radiat. Phys. Chem. 2021, 186, 109526. [Google Scholar] [CrossRef]
- Xu, J.; Guo, Y.; Song, R.; Liang, B.; Chi, Y. Supply Voltage and Temperature Dependence of Single-Event Transient in 28-nm FDSOI MOSFETs. Symmetry 2019, 11, 793. [Google Scholar] [CrossRef] [Green Version]
- Radu, M.D.; Costea, I.M.; Stan, V.A. Automatic Traffic Sign Recognition Artificial Inteligence—Deep Learning Algorithm. In Proceedings of the 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Bucharest, Romania, 25–27 June 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, L.; Xia, Y. Artificial Intelligence Brain. In Proceedings of the 2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), Shanghai, China, 27-29 August 2021; pp. 266–270. [Google Scholar] [CrossRef]
- Kaplan, A.; Güldogan, E.; Çolak, C.; Arslan, A.K. Prediction of Melanoma from Dermoscopic Images Using Deep Learning-Based Artificial Intelligence Techniques. In Proceedings of the 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 21–22 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Tang, H.; Liu, H.; Xiao, W.; Sebe, N. When Dictionary Learning Meets Deep Learning: Deep Dictionary Learning and Coding Network for Image Recognition With Limited Data. IEEE Trans. Neural Networks Learn. Syst. 2021, 32, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
- Toğaçar, M.; Ergen, B.; Özyurt, F. Deep learning activities on remote sensed hyperspectral images. In Proceedings of the 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 28–30 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Burroughs, S.J.; Gokaraju, B.; Roy, K.; Khoa, L. DeepFakes Detection in Videos using Feature Engineering Techniques in Deep Learning Convolution Neural Network Frameworks. In Proceedings of the 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 13–15 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Roy, S.; Menapace, W.; Oei, S.; Luijten, B.; Fini, E.; Saltori, C.; Huijben, I.; Chennakeshava, N.; Mento, F.; Sentelli, A.; et al. Deep Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound. IEEE Trans. Med. Imaging 2020, 39, 2676–2687. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Gao, Q.; Zheng, Z.; Yuan, D.; Zhou, B.; Hong, R. Research on Head-up and Down Behavior Computer Detection by Deep Learning and Artificial Intelligence. In Proceedings of the 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Changsha, China, 20–22 October 2021; pp. 597–600. [Google Scholar] [CrossRef]
- Guha, R. Improving the Performance of an Artificial Intelligence Recommendation Engine with Deep Learning Neural Nets. In Proceedings of the 2021 6th International Conference for Convergence in Technology (I2CT), Maharashtra, India, 2–4 April 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Padilla, W.J.; Nadell, C.C.; Huang, B.; Malof, J. Accelerated Terahertz Metasurface Design with Deep Learning. In Proceedings of the 2020 IEEE International Conference on Plasma Science (ICOPS), Singapore, 6–10 December 2020; p. 441. [Google Scholar] [CrossRef]
- Strickland, M.; Strickland, D.; Royston, S.; Riepnieks, A. Frequency Estimation using Curve Fitting. In Proceedings of the 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), Glasgow, UK, 27–30 September 2020; pp. 118–123. [Google Scholar] [CrossRef]
- Mitrofanov, S.; Semenkin, E. An Approach to Training Decision Trees with the Relearning of Nodes. In Proceedings of the 2021 International Conference on Information Technologies (InfoTech), Varna, Bulgaria, 16–17 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Zou, J.; Li, C.; Yang, Q.; Li, Q. Fault prediction method based on SVR of improved PSO. In Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May 2015; pp. 1671–1675. [Google Scholar] [CrossRef]
- Bajpai, D.; He, L. Evaluating KNN Performance on WESAD Dataset. In Proceedings of the 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 25–26 September 2020; pp. 60–62. [Google Scholar] [CrossRef]
- Maalouf, M.; Khoury, N.; Homouz, D.; Polychronopoulou, K. Accurate Prediction of Gas Compressibility Factor using Kernel Ridge Regression. In Proceedings of the 2019 Fourth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Beirut, Lebanon, 3–5 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
gate length (L) | 28 nm |
buried oxygen layer thickness (Tbox) | 20 nm |
gate dielectric layer thickness (Tox) | 1.2 nm |
backplane layer thickness (Tbp) | 25 nm |
metal work function (WF) | 4.52 eV |
backplane doping concentration (Nbp) | 2 × 1018 cm−3 |
substrate doping concentration (Nsub) | 1 × 1014 cm−3 |
bulk doping concentration (Nbd) | 1 × 1015 cm−3 |
source doping concentration (Ns) | 4.4 × 1020 cm−3 |
drain doping concentration (Nd) | 4.4 × 1020 cm−3 |
Input Parameters | Range/Step |
---|---|
Linear transmission energy (LET) | [10, 100]/10 (MeV·cm2/mg) |
The incident position of the particle (x) | [−75, 75]/15 (nm) |
The incident angle of the particle (θ) | [0, 75]/15 (°) |
Drain bias voltage (Vd) | [0.2, 1]/0.2 (V) |
LET (MeV∙cm2/mg) | x (nm) | θ (°) | Vd (V) | I0 (mA) | Q0 (fF) |
---|---|---|---|---|---|
10 | −45 | 75 | 0.2 | 0.168 | 9.69 |
10 | −45 | 75 | 0.4 | 0.213 | 11.15 |
20 | 60 | 30 | 1 | 1.741 | 48.93 |
100 | 30 | 15 | 1 | 3.697 | 97.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Wang, S.; Du, S.; Pan, J.; Ma, L.; Chen, S.; Liu, H.; Chen, Y. Prediction of Single-Event Effects in FDSOI Devices Based on Deep Learning. Micromachines 2023, 14, 502. https://doi.org/10.3390/mi14030502
Zhao R, Wang S, Du S, Pan J, Ma L, Chen S, Liu H, Chen Y. Prediction of Single-Event Effects in FDSOI Devices Based on Deep Learning. Micromachines. 2023; 14(3):502. https://doi.org/10.3390/mi14030502
Chicago/Turabian StyleZhao, Rong, Shulong Wang, Shougang Du, Jinbin Pan, Lan Ma, Shupeng Chen, Hongxia Liu, and Yilei Chen. 2023. "Prediction of Single-Event Effects in FDSOI Devices Based on Deep Learning" Micromachines 14, no. 3: 502. https://doi.org/10.3390/mi14030502
APA StyleZhao, R., Wang, S., Du, S., Pan, J., Ma, L., Chen, S., Liu, H., & Chen, Y. (2023). Prediction of Single-Event Effects in FDSOI Devices Based on Deep Learning. Micromachines, 14(3), 502. https://doi.org/10.3390/mi14030502