An Introduction to Nonlinear Integrated Photonics Devices: Nonlinear Effects and Materials
Abstract
:1. Introduction
2. Fundamental Phenomena
2.1. Second-Order Phenomena
2.2. Third-Order Phenomena
2.3. Ultrafast Phenomena
3. Photonic Nonlinear Materials
3.1. Semiconductors
3.2. Glassy Materials and Lithium Niobate
3.3. Innovative Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- “Photonics”, Merriam-Webster Dictionary. Available online: https://www.merriam-webster.com/dictionary/photonics (accessed on 21 April 2020).
- Krasnodebski, M. Throwing light on photonics: The genealogy of a technological paradigm. Centaurus 2018, 60, 3–24. [Google Scholar] [CrossRef]
- Miller, S.E. Integrated Optics: An Introduction. Bell Sys. Tech. J. 1969, 48, 2059–2069. [Google Scholar] [CrossRef]
- Koch, T.L.; Koren, U. Semiconductor photonic integrated circuits. IEEE J. Quant. Electron. 1991, 27, 641–653. [Google Scholar] [CrossRef]
- Nagarajan, R.; Joyner, C.H.; Schneider, R.P.; Bostak, J.S.; Butrie, T.; Dentai, A.G.; Dominic, V. Large-scale photonic integrated circuits. IEEE J. Sel. Topics Quant. Electron. 2005, 11, 50–65. [Google Scholar] [CrossRef]
- Kerr, J. XL. A new relation between electricity and light: Dielectrified media birefringent. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1875, 50, 337–348. [Google Scholar] [CrossRef]
- Kerr, J. LIV. A new relation between electricity and light: Dielectrified media birefringent. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1875, 50, 446–458. [Google Scholar] [CrossRef]
- Göppert, M. Über die Wahrscheinlichkeit des Zusammenwirkens zweier Lichtquanten in einem Elementarakt. Naturwissenschaften 1929, 17, 932. [Google Scholar] [CrossRef]
- Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of Optical Harmonics. Phys. Rev. Lett. 1961, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, J.A.; Bloembergen, N.; Ducuing, J.; Pershan, P.S. Interactions between Light Waves in a Nonlinear Dielectric. Phys. Rev. 1962, 127, 1918. [Google Scholar] [CrossRef]
- Bloembergen, N.; Pershan, P. Light Waves at the Boundary of Nonlinear Media. Phys. Rev. 1962, 128, 606–622. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.B.; Boyd, J.T. Wideband CO2 Laser Second Harmonic Generation Phase Matched in GaAs Thin-Film Waveguides. Appl. Phys. Lett. 1971, 19, 266. [Google Scholar] [CrossRef]
- Stegeman, G.I.; Seaton, C.T. Nonlinear integrated optics. J. Appl. Phys. 1985, 58, R57–R78. [Google Scholar] [CrossRef]
- Guo, Y.; Kao, C.K.; Li, H.E.; Chiang, K.S. Nonlinear Photonics: Nonlinearities in Optics, Optoelectronics and Fiber Communications; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Gibbs, H.M.; Khitrova, G.; Peyghambarian, N. Nonlinear Photonics; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Chen, Z.; Morandotti, R. Nonlinear Photonics and Novel Optical Phenomena; Springer: New York, USA, 2012. [Google Scholar]
- Hendrickson, S.M.; Foster, A.C.; Camacho, R.M.; Clader, B.D. Integrated nonlinear photonics: Emerging applications and ongoing challenges. J. Optical Soc. Am. B 2014, 31, 3193–3203. [Google Scholar] [CrossRef]
- Fathpour, S. Heterogeneous Nonlinear Integrated Photonics. IEEE J. Quantum Electron. 2018, 54, 1–16. [Google Scholar] [CrossRef]
- Wabnitz, S.; Eggleton, B.J. All-Optical Signal Processing; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Ji, X.; Liu, J.; He, J.; Wang, R.N.; Qiu, Z.; Riemensberger, J.; Kippenberget, T.J. Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun. Phys. 2022, 5, 84. [Google Scholar] [CrossRef]
- Koshelev, K.; Kruk, S.; Melik-Gaykazyan, E.; Jae-Hyuck Choi, J.H.; Andrey Bogdanov, A.; Hong-Gyu Park, H.-G.; Kivshar, Y. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 2020, 367, 288–292. [Google Scholar] [CrossRef] [Green Version]
- Caspani, L.; Duchesne, D.; Dolgaleva, K.; Wagner, S.J.; Ferrera, M.; Razzari, L.; Pasquazi, A.; Peccianti, M.; Moss, D.J.; Aitchison, J.S.; et al. Optical frequency conversion in integrated devices. J. Opt. Soc. Am. B 2011, 28, A67–A82. [Google Scholar] [CrossRef] [Green Version]
- Janner, D.; Tulli, D.; García-Granda, M.; Belmonte, M.; Pruneri, V. Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photon. Rev. 2009, 3, 301–313. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Shen, Y.R. The Principles of Nonlinear Optics; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Agrawal, G.P.; Boyd, R.W. Contemporary Nonlinear Optics; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Langrock, C.; Kumar, S.; McGeehan, J.E.; Willner, A.E.; Fejer, M.M. All-Optical Signal Processing Using χ(2) Nonlinearities in Guided-Wave Devices. J. Light. Technol. 2006, 24, 2579. [Google Scholar] [CrossRef]
- Chang, L.; Boes, A.; Shu, H.; Xie, W.; Huang, H.; Qin, J.; Shen, B.; Wang, X.; Mitchell, A.; Bowers, J.E. Second Order Nonlinear Photonic Integrated Platforms for Optical Signal Processing. IEEE J. Sel. Top. Quant. Electron. 2021, 27, 1–11. [Google Scholar] [CrossRef]
- Shen, Y.R.; Bloembergen, N. Theory of Stimulated Brillouin and Raman Scattering. Phys. Rev. 1965, 137, A1787–A1805. [Google Scholar] [CrossRef]
- Eckhardt, G.; Bortfeld, D.P.; Geller, M. Stimulated emission of stokes and anti-stokes Raman lines from diamond, calcite, and sulfur single crystals. Appl. Phys. Lett. 1963, 3, 137–138. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A. Fiber Amplifiers and Fiber Lasers Based on Stimulated Raman Scattering: A Review. Micromachines 2020, 11, 247. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, M.A.; Sirleto, L. Integrated Raman Laser: A Review of the Last Two Decades. Micromachines 2020, 11, 330. [Google Scholar] [CrossRef] [Green Version]
- Sirleto, L.; Vergara, A.; Ferrara, M.A. Advances in stimulated Raman scattering in nanostructures. Adv. Opt. Photonics 2017, 9, 169. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Vergara, A. Toward an ideal nanomaterial for on-chip Raman laser. J. Nonlinear Opt. Phys. Mater. 2017, 26, 1750039. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Nikitin, T.; Novikov, S.; Khriachtchev, L. Giant Raman gain in silicon nanocrystals. Nat. Commun. 2012, 3, 1220. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, M.A.; Sirleto, L.; Nicotra, G.; Spinella, C.; Rendina, I. Enhanced gain coefficient in Raman amplifier based on silicon nanocomposites. Photon. Nanostructures Fundam Appl. 2011, 9, 1–7. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Nicotra, G.; Spinella, C.; Rendina, I. Observation of stimulated Raman scattering in silicon nanocomposites. Appl. Phys. Lett. 2009, 94, 221106. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Donato, M.G.; Sirleto, L.; Messina, G.; Santangelo, S.; Rendina, I. Study of strain and wetting phenomena in porous silicon by Raman scattering. J. Raman Spectrosc. 2008, 39, 199–204. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Rendina, I.; Basu, S.N.; Warga, J.; Li, R.; Negro, L.D. Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures. Appl. Phys. Lett 2008, 93, 251104. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Rendina, I.; Jalali, B. Broadening and tuning of spontaneous Raman emission in porous silicon at 1.5 μm. Appl. Phys. Lett. 2006, 88, 211105. [Google Scholar] [CrossRef]
- Sirleto, L.; Raghunathan, V.; Rossi, A.; Jalali, B. Raman emission in porous silicon at 1.54 μm. Electron. Lett. 2004, 40, 1221–1222. [Google Scholar] [CrossRef]
- Sirleto, L.; Donato, M.G.; Messina, G.; Santangelo, S.; Lipovskii, A.; Tagantsev, D.; Pelli, S.; Righini, G.C. Raman gain in niobium-phosphate glasses. Appl. Phys. Lett. 2009, 94, 31105. [Google Scholar] [CrossRef] [Green Version]
- Donato, M.G.; Gagliardi, M.; Sirleto, L.; Messina, G.; Lipovskii, A.; Tagantsev, D.; Righini, G.C. Raman optical amplification properties of sodium–niobium–phosphate glasses. Appl. Phys. Lett. 2010, 97, 231111. [Google Scholar] [CrossRef]
- Sirleto, L.; Aronne, A.; Gioffré, M.; Fanelli, E.; Righini, G.C.; Pernice, P.; Vergara, A. Compositional and thermal treatment effects on Raman gain and bandwidth in nanostructured silica based glasses. Opt. Mater. 2013, 36, 408–413. [Google Scholar] [CrossRef]
- Pernice, P.; Sirleto, L.; Vergara, A.; Aronne, A.; Gagliardi, M.; Fanelli, E.; Righini, G.C. Large Raman Gain in a Stable Nanocomposite Based on Niobiosilicate Glass. J. Phys. Chem. C 2011, 115, 17314–17319. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, K.; Zhou, X.; Tsang, H.K. Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers. Nat Commun 2022, 13, 3534. [Google Scholar] [CrossRef]
- Merklein, M.; Kabakova, I.V.; Zarifi, A.; Eggleton, B.J. 100 years of Brillouin scattering: Historical and future perspectives. Appl. Phys. Rev. 2022, 9, 041306. [Google Scholar] [CrossRef]
- Eggleton, B.J.; Poulton, C.G.; Rakich, P.T.; Steel, M.J.; Bahl, G. Brillouin integrated photonics. Nat. Photonics 2019, 13, 664–677. [Google Scholar] [CrossRef]
- Agrawal, G. Nonlinear Fiber Optics, 5th ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Schneider, T. Nonlinear Optics in Telecommunications; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Alfano, R.R.; Shapiro, S.L. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 1970, 24, 592–594. [Google Scholar] [CrossRef]
- Duchesne, D.; Ferrera, M.; Razzari, L.; Morandotti, R.; Little, B.E.; Chu, S.T.; Moss, D.J. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt. Express 2009, 17, 1865–1870. [Google Scholar] [CrossRef]
- Dudley, J.M.; Genty, G.; Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 2006, 78, 1135–1184. [Google Scholar] [CrossRef]
- Cheng, T.; Zhang, L.; Xue, X.; Deng, D.; Suzuki, T.; Ohishi, Y. Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 μm. Opt. Express 2015, 23, 4125–4134. [Google Scholar] [CrossRef]
- Kivshar, Y.; Agrawal, G.P. Optical Solitons: From Fibres to Photonic Crystals; Academy Press: San Diego, CA, USA, 2003. [Google Scholar]
- Mitschke, F.; Mahnke, C.; Hause, A. Soliton Content of Fiber-Optic Light Pulses. Appl. Sci. 2017, 7, 635. [Google Scholar] [CrossRef]
- Haus, H.A. Mode-locking of lasers. IEEE J. Sel. Top. Quant. Electron. 2000, 6, 1173–1185. [Google Scholar] [CrossRef]
- Herr, T.; Brasch, V.; Jost, J.D.; Wang, C.Y.; Kondratiev, N.M.; Gorodetsky, M.L.; Kippenberg, T.J. Temporal solitons in optical microresonators. Nat. Photon 2014, 8, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Kippenberg, T.J.; Gaeta, A.L.; Lipson, M.; Gorodetsky, M.L. Dissipative Kerr solitons in optical microresonators. Science 2018, 361, aan8083. [Google Scholar] [CrossRef] [Green Version]
- Xiang, C.; Liu, J.; Guo, J.; Chang, L.; Wang, R.N.; Weng, W.; Peters, J.; Xie, W.; Zhang, Z.; Riemensberger, J.; et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 2021, 373, 99–103. [Google Scholar] [CrossRef]
- Stegeman, G.I.; Segev, M. Optical Spatial Solitons and Their Interactions: Universality and Diversity. Science 1999, 286, 1518–1523. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Segev, M.; Christodoulides, D.N. Optical spatial solitons: Historical overview and recent advances. Rep. Prog. Phys. 2012, 75, 086401. [Google Scholar] [CrossRef] [Green Version]
- Chauvet, M.; Fanjoux, G.; Huy, K.P.; Nazabal, V.; Charpentier, F.; Billeton, T.; Boudebs, G.; Cathelinaud, M.; Gorza, S.P. Kerr spatial solitons in chalcogenide waveguides. Opt. Lett. 2009, 34, 1804–1806. [Google Scholar] [CrossRef]
- Gurgov, H.C.; Cohen, O. Spatiotemporal pulse-train solitons. Opt. Express 2009, 17, 7052–7058. [Google Scholar] [CrossRef]
- Wu, Y.-D. Nonlinear all-optical WDM based on spatial solitons in optical communication spectral regions. J. Electromagn. Waves Appl. 2014, 28, 2025–2033. [Google Scholar] [CrossRef]
- Ma, M.; Chen, L.R. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing. APL Photonics 2016, 1, 086104. [Google Scholar] [CrossRef] [Green Version]
- Grubel, B.C.; Bosworth, B.T.; Kossey, M.R.; Cooper, A.B.; Foster, M.A.; Foster, A.C. Secure communications using nonlinear silicon photonic keys. Opt. Express 2018, 26, 4710–4722. [Google Scholar] [CrossRef] [Green Version]
- Dekker, R.; Usechak, N.; Först, M.; Driessen, A. Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. J. Phys. D: Appl. Phys. 2007, 40, R249. [Google Scholar] [CrossRef]
- Osgood, R.M.; Panoiu, N.C.; Dadap, J.I.; Liu, X.; Chen, X.; Hsieh, I.-W.; Dulkeith, E.; Green, W.M.J.; Vlasov, Y.A. Engineering nonlinearities in nanoscale optical systems: Physics and applications in dispersion-engineered silicon nanophotonic wires. Adv. Opt. Photonics 2009, 1, 162–235. [Google Scholar] [CrossRef]
- Leuthold, J.; Koos, C.; Freude, W. Nonlinear silicon photonics. Nat. Photonics 2010, 4, 535–544. [Google Scholar] [CrossRef]
- Nikdast, M.; Pasricha, S.; Nicolescu, G.; Seyedi, A.; Liang, D. Silicon Photonics for High-Performance Computing and Beyond; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- He, L.; Zhang, F.; Zhang, H.; Kong, L.-J.; Zhang, W.; Xu, X.; Zhang, X. Topology-Optimized Ultracompact All-Optical Logic Devices on Silicon Photonic Platforms. ACS Photonics 2022, 9, 597–604. [Google Scholar] [CrossRef]
- Dinu, M.; Quochi, F.; Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 2003, 82, 2954–2956. [Google Scholar] [CrossRef]
- Liang, T.K.; Tsang, H.K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 2004, 84, 2745. [Google Scholar] [CrossRef]
- Fathpour, S. Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics 2015, 4, 143–164. [Google Scholar] [CrossRef]
- Krückel, C.J.; Fülöp, A.; Klintberg, T.; Bengtsson, J.; Andrekson, P.A.; Torres-Company, V. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides. Opt. Express 2015, 23, 25827–25837. [Google Scholar] [CrossRef] [Green Version]
- Dizaji, M.R.; Krückel, C.J.; Fülöp, A.; Andrekson, P.A.; Torres-Company, V.; Chen, L.R. Silicon-rich nitride waveguides for ultrabroadband nonlinear signal processing. Opt. Express 2017, 25, 12100–12108. [Google Scholar] [CrossRef]
- Tana, D.T.H.; Ngb, D.K.T.; Choia, J.W.; Sahina, E.; Sohna, B.-U.; Chena, G.F.R.; Xinga, P.; Gaoa, H.; Caoa, Y. Nonlinear optics in ultra-silicon-rich nitride devices: Recent developments and future outlook. Adv. Phys. X 2021, 6, 1905544. [Google Scholar] [CrossRef]
- Billat, A.; Grassani, D.; Pfeiffer, M.H.P.; Kharitonov, S.; Kippenberg, T.J.; Brès, C.-S. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 2017, 8, 1016. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Moille, G.; Rao, A.; Westly, D.A.; Srinivasanet, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics 2021, 15, 131–136. [Google Scholar] [CrossRef]
- Chia, X.X.; Chen, G.F.R.; Cao, Y.; Xing, P.; Gao, H.; Ng, D.K.T.; Tan, D.T.H. Optical characterization of deuterated silicon-rich nitride waveguides. Sci. Rep. 2022, 12, 12697. [Google Scholar] [CrossRef]
- Kuyken, B.; Ji, H.; Clemmen, S.; Selvaraja, S.K.; Hu, H.; Pu, M.; Galili, M.; Jeppesen, P.; Morthier, G.; Massar, S.; et al. Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides. Opt. Express 2011, 19, B146–B153. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, K.; Preble, S.F. Optical nonlinearities in hydrogenated-amorphous silicon waveguides. Opt. Express 2010, 18, 8998–9005. [Google Scholar] [CrossRef]
- Grillet, C.; Carletti, L.; Monat, C. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt. Express 2012, 20, 22609–22615. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Lee, J.Y.; Feng, P.X.-L.; Lin, Q. High Q silicon carbide microdisk resonator. Appl. Phys. Lett. 2014, 104, 181103. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Fang, Z.; Yi, A.; Yang, B.; Wang, Z.; Zhou, L.; Shen, C.; Zhu, Y.; Zhou, Y.; Bao, R.; et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light Sci. Appl. 2021, 10, 139. [Google Scholar] [CrossRef]
- Xing, P.; Ma, D.; Ooi, K.J.; Choi, J.W.; Agarwal, A.M.; Tan, D. CMOS-compatible PECVD silicon carbide platform for linear and nonlinear optics. ACS Photonics 2019, 6, 1162–1167. [Google Scholar] [CrossRef]
- Castelletto, S.; Peruzzo, A.; Bonato, C.; Johnson, B.C.; Marina Radulaski, M.; Ou, H.; Florian Kaiser, F.; Wrachtrup, J. Silicon Carbide Photonics Bridging Quantum Technology. ACS Photonics 2022, 9, 1434–1457. [Google Scholar] [CrossRef]
- Castelletto, S.; Rosa, L.; Johnson, B.C. Silicon Carbide for Novel Quantum Technologies Devices, Chapter 9. In Advanced Silicon Carbide Devices and Processing; Intech Open: London, UK, 2015. [Google Scholar]
- Splitthoff, L.; Wolff, M.A.; Grottke, T.; Schuck, C. Tantalum pentoxide nanophotonic circuits for integrated quantum technology. Opt. Express 2020, 28, 11921–11932. [Google Scholar] [CrossRef]
- Tai, C.-Y.; Wilkinson, J.S.; Perney, N.M.B.; Netti, M.C.; Cattaneo, F.; Finlayson, C.E.; Baumberg, J.J. Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation. Opt. Express 2004, 12, 5110–5116. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-L.; Chiu, Y.-J.; Chen, C.-L.; Lin, Y.-Y.; Chu, A.-K.; Lee, C.-K. Four-wave-mixing in the loss low submicrometer Ta2O5 channel waveguide. Opt. Lett. 2015, 40, 4528–4531. [Google Scholar] [CrossRef]
- Mobini, E.; Espinosa, D.H.G.; Vyas, K.; Dolgaleva, K. AlGaAs Nonlinear Integrated Photonics. Micromachines 2022, 13, 991. [Google Scholar] [CrossRef]
- Aitchison, J.S.; Hutchings, D.; Kang, J.; Stegeman, G.; Villeneuve, A. The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quantum Electron. 1997, 33, 341–348. [Google Scholar] [CrossRef]
- Ohashi, M.; Kondo, T.; Ito, R.; Fukatsu, S.; Shiraki, Y.; Kumata, K.; Kano, S. Determination of quadratic nonlinear optical coefficient of AlxGa1−x As system by the method of reflected second harmonics. J. Appl. Phys. 1993, 74, 596–601. [Google Scholar] [CrossRef]
- Espindola, R.P.; Udo, M.K.; Ho, S.T. Nearly-degenerate frequency technique for simultaneous measurement of n(2) and α(2), and four-wave mixing gain coefficients in waveguides. Opt. Commun. 1995, 119, 682–692. [Google Scholar] [CrossRef]
- Wagner, S.J.; Meier, J.; Helmy, A.S.; Aitchison, J.S.; Sorel, M.; Hutchings, D.C. Polarization-dependent nonlinear refraction and two-photon absorption in GaAs/AlAs superlattice waveguides below the half-bandgap. J. Opt. Soc. Am. 2007, 24, 1557–1563. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Cong, H.; Zhang, B.; Wei, W.; Liang, Y.; Fang, S.; Wang, T.; Zhang, J. Enhanced optical Kerr nonlinearity of graphene/Si hybrid waveguide. Appl. Phys. Lett. 2019, 114, 071104. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.J.; Schneider, K.; Hönl, S.; Anderson, M.; Baumgartner, Y.; Czornomaz, L.; Kippenberg, T.J.; Seidler, P. Integrated gallium phosphide nonlinear photonics. Nat. Photonics 2020, 14, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, H.C. Optical Nonlinearities in Glasses. In Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics; IntechOpen: London, UK, 2022. [Google Scholar]
- Yamane, M.; Asahara, Y. Nonlinear optical glass. In Glasses for Photonics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Guignard, M.; Nazabal, V.; Zhang, X.; Smektala, F.; Moréac, A.; Pechev, S.; Zeghlache, H.; Kudlinski, A.; Martinelli, G.; Quiquempois, Y. Crystalline phase responsible for the permanent second-harmonic generation in chalcogenide glass-ceramics. Opt. Mater. 2007, 30, 338–345. [Google Scholar] [CrossRef]
- Milam, D. Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Appl. Opt. 1998, 37, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Ferrera, M.; Duchesne, D.; Razzari, L.; Peccianti, M.; Morandotti, R.; Cheben, P.; Janz, S.; Xu, D.-X.; Little, B.E.; Chu, S.; et al. Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. Opt. Express 2009, 17, 14098–14103. [Google Scholar] [CrossRef] [Green Version]
- Eggleton, B.J.; Luther-Davies, B.; Richardson, K. Chalcogenide photonics. Nat. Photonics 2011, 5, 141–148. [Google Scholar] [CrossRef]
- Choi, J.; Han, Z.; Sohn, B.-U.; Chen, G.F.R.; Smith, C.; Kimerling, L.C.; Richardson, K.A.; Anuradha, M.; Agarwal, A.M.; Tan, D.T.H. Nonlinear characterization of GeSbS chalcogenide glass waveguides. Sci. Rep. 2016, 6, 39234. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Husakou, A.; Herrmann, J. Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes. Opt. Express 2010, 18, 7488–7496. [Google Scholar] [CrossRef] [PubMed]
- Bache, M.; Schiek, R. Review of measurements of Kerr nonlinearities in lithium niobate: The role of the delayed Raman response. arXiv 2012, arXiv:1211.1721. [Google Scholar]
- Beyer, O.; Maxein, D.; Buse, K.; Sturman, B.; Hsieh, H.T.; Psaltis, D. Femtosecond time-resolved absorption processes in lithium niobate crystals. Opt. Lett. 2005, 30, 1366–1368. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Nuccio, S.; Wu, X.; Yilmaz, O.F.; Zhang, L.; Fazal, I.; Yang, J.Y.; Yue, Y.; Willner, A.E. 40 Gbit/s optical data exchange between wavelength-division-multiplexed channels using a periodically poled lithium niobate waveguide. Opt. Lett. 2010, 35, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, H.; Geng, D.; Willner, A.E. Single-PPLN-assisted wavelength-/time-selective switching/dropping/swapping for 100-GHz-spaced WDM signals. Opt. Express 2013, 21, 3756–3774. [Google Scholar] [CrossRef] [PubMed]
- Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Luo, R.; Jiang, H.; Rogers, S.; Liang, H.; He, Y.; Lin, Q. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 2017, 25, 24531–24539. [Google Scholar] [CrossRef]
- Bazzan, M.; Sada, C. Optical waveguides in lithium niobate: Recent developments and applications. Appl. Phys. Rev. 2015, 2, 40603. [Google Scholar] [CrossRef] [Green Version]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Vazimali, M.G.; Fathpour, S. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics 2022, 4, 034001. [Google Scholar] [CrossRef]
- Yang, Z.; Ko, C.; Ramanathan, S. Oxide electronics utilizing ultrafast metalinsulator transitions. Annu. Rev. Mater. Res. 2011, 41, 337–367. [Google Scholar] [CrossRef]
- Raoux, S. Phase change materials. Annu. Rev. Mater. Res. 2009, 39, 25–48. [Google Scholar] [CrossRef]
- Cueff, S.; John, J.; Zhang, Z.; Parra, J.; Sun, J.; Orobtchouk, R.; Ramanathan, S.; Sanchis, P. VO2 nanophotonics. APL Photonics 2020, 5, 110901. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.L.; Vermeulen, N.; Sipe, J.E. Third order optical nonlinearity of graphene. New J. Phys. 2014, 16, 053014. [Google Scholar] [CrossRef]
- An, Y.Q.; Nelson, F.; Lee, J.U.; Diebold, A.C. Enhanced optical second-harmonic generation from the current-biased graphene/SiO2/Si (001) structure. Nano Lett. 2013, 13, 2104–2109. [Google Scholar] [CrossRef]
- Feng, M.; Zhan, H.; Chen, Y. Nonlinear optical and optical limiting properties of graphene families. Appl. Phys. Lett. 2010, 96, 033107. [Google Scholar] [CrossRef]
- Hendry, E.; Hale, P.J.; Moger, J.; Savchenko, A.K.; Mikhailov, S.A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 2010, 105, 097401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Bao, Q.; Tang, D.; Zhao, L.; Loh, K. Large energy soliton erbium doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett. 2009, 95, 141103. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, D.Y.; Zhao, L.M.; Bao, Q.L.; Loh, K.P. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 2009, 17, 17630–17635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, J.; Jia, L.; Qu, Y.; Yang, Y.; Jia, B.; Moss, D.J. Graphene Oxide for Nonlinear Integrated Photonics. Laser Photonics Rev. 2022, 2200512. [Google Scholar] [CrossRef]
- Wu, J.; Lin, H.; Moss, D.J.; Loh, K.P.; Jia, B. Graphene oxide for photonics, electronics and optoelectronics. Nat. Rev. Chem. 2023. [Google Scholar] [CrossRef]
- You, J.W.; Bongu, S.R.; Bao, Q.; Panoiu, N.C. Nonlinear optical properties and applications of 2D materials: Theoretical and experimental aspects. Nanophotonics 2019, 8, 63–97. [Google Scholar] [CrossRef]
- Zhao, M.; Ye, Z.; Suzuki, R.; Ye, Y.; Zhu, H.; Xiao, J.; Wang, Y.; Iwasa, Y.; Zhang, X. Atomically phase-matched second-harmonic generation in a 2D crystal. Light Sci. Appl. 2016, 5, e16131. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Shin, J.H.; Lee, G.H.; Lee, C.H. Two-dimensional semiconductor optoelectronics based on van der Waals heterostructures. Nanomaterials 2016, 6, 193. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Rao, Y.; Mak, K.F.; You, Y.; Wang, S.; Dean, C.R.; Heinz, T.F. Probing Symmetry Properties of Few-Layer MoS2 and h-BN by Optical Second-Harmonic Generation. Nano Lett. 2013, 13, 3329–3333. [Google Scholar] [CrossRef] [PubMed]
- Varma, S.J.; Kumar, J.; Liu, Y.; Layne, K.; Wu, J.; Liang, C.; Nakanishi, Y.; Aliyan, A.; Yang, W.; Ajayan, P.M.; et al. 2D TiS2 layers: A superior nonlinear optical limiting material. Adv. Opt. Mater. 2017, 5, 1700713. [Google Scholar] [CrossRef]
- Kumar, N.; Najmaei, S.; Cui, Q.; Ceballos, F.; Ajayan, P.-M.; Lou, J.; Zhao, H. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 2013, 87, 161403. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Marie, X.; Gerber, I.C.; Amand, T.; Lagarde, D.; Bouet, L.; Vidal, M.; Balocchi, A.; Urbaszek, B. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 2015, 114, 097403. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Cheng, J.; Zhou, Y.; Cao, T.; Hong, H.; Liao, Z.; Wu, S.; Peng, H.; Liu, K.; Yu, D. Strong second-harmonic generation in atomic layered GaSe. J. Am. Chem. Soc. 2015, 137, 7994–7997. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.J.L.F.; de Matos, C.J.S.; Ho, Y.W.; Peixoto, H.; de Oliveira, R.E.P.; Wu, H.Y.; Castro Neto, A.H.; Viana-Gomeset, J. Resonantly Increased Optical Frequency Conversion in Atomically Thin Black Phosphorus. Adv. Mater. 2016, 28, 10693–10700. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.B.; Miao, L.L.; Guo, Z.N.; Qi, X.; Zhao, C.J.; Zhang, H.; Wen, S.C.; Tang, D.Y.; Fan, D.Y. Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt. Express 2015, 23, 11183–11194. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, X.F.; Ge, Y.; Guo, Z.; Zeng, Z.; Xu, Q.-H.; Zhang, H.; Yu, X.-F.; Fana, D. Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. J. Mater. Chem. C 2017, 5, 3007–3013. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zhang, K.; Chen, W.; Zhou, F.; Ji, W. Nonlinear absorption and nonlinear refraction in a chemical vapor deposition-grown, ultrathin hexagonal boron nitride film. Opt. Lett. 2016, 41, 1368–1371. [Google Scholar] [CrossRef]
- Kumbhakar, P.; Kole, A.K.; Tiwary, C.S.; Biswas, S.; Vinod, S.; Taha-Tijerina, J.; Chatterjee, U.; Ajayan, P.M. Nonlinear optical properties and temperature-dependent UV-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets. Adv. Opt. Mater. 2015, 3, 828–835. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, B.; Wang, S.; Wang, D.; Wang, A.; Wang, Z.; Yu, H.; Zhang, H.; Chen, Y.; Zhao, M.; et al. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm. Adv. Mater. 2017, 29, 1605972. [Google Scholar] [CrossRef]
- Wei, R.; Zhang, H.; Hu, Z.; Qiao, T.; He, X.; Guo, Q.; Tian, X.; Chen, Z.; Qiu, J. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets. Nanotechnology 2016, 27, 305203. [Google Scholar] [CrossRef]
- Wei, C.; Luo, H.; Zhang, H.; Li, C.; Xie, J.; Li, J.; Liu, Y. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulphide (WS2) saturable absorber. Laser Phys. Lett. 2016, 13, 105108. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Han, L.; Lu, R.; Hu, Y.; Li, Z.; Liu, Y. Q-switched Tm3+-doped fiber laser with a micro-fiber based black phosphorus saturable absorber. Laser Phys. 2016, 26, 065104. [Google Scholar] [CrossRef]
- Liberal, I.; Engheta, N. Near-zero refractive index photonics. Nat. Photonics 2017, 11, 149–158. [Google Scholar] [CrossRef]
- Argyropoulos, C.; Chen, P.Y.; D’Aguanno, G.; Engheta, N.; Alù, A. Boosting optical nonlinearities in ε-near-zero plasmonic channels. Phys. Rev. B 2012, 85, 45129. [Google Scholar] [CrossRef]
- de Ceglia, D.; Campione, S.; Vincenti, M.A.; Capolino, F.; Scalora, M. Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties. Phys. Rev. B 2013, 87, 155140. [Google Scholar] [CrossRef] [Green Version]
- Suchowski, H.; O’Brien, K.; Wong, Z.J.; Salandrino, A.; Yin, X.; Zhang, X. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 2013, 342, 1223–1226. [Google Scholar] [CrossRef] [Green Version]
- Caspani, L.; Kaipurath, R.P.M.; Clerici, M.; Ferrera, M.; Roger, T.; Kim, J.; Kinsey, N.; Pietrzyk, M.; Di Falco, A.; Shalaev, V. M.; et al. Enhanced Nonlinear Refractive Index in ε-Near-Zero Materials. Phys. Rev. Lett. 2016, 116, 233901. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.Z.; De Leon, I.; Boyd, R.W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016, 352, 795–797. [Google Scholar] [CrossRef]
- Yoshioka, V.; Lu, J.; Tang, Z.; Jin, J.; Olsson, R.H.; Zhen, B. Strongly enhanced second-order optical nonlinearity in CMOS-compatible Al1−xScxN thin films. APL Mater. 2021, 9, 101104. [Google Scholar] [CrossRef]
- Sirleto, L.; Righini, G.C. An Introduction to Nonlinear Integrated Photonics Devices: Structures and Devices. Micromachines 2023. submitted. [Google Scholar]
Material | Wavelength (nm) | FOM = n2/βTPAλ | ||
---|---|---|---|---|
SiO2 [103] | 3 | Negligible | 1053 | - |
Hydex [52] | 13 | Negligible | 1560 | - |
Stoichiometric SiN [76] | 28 | Negligible | 1550 | - |
Lithium niobate [108] | 39 | Negligible | 1064 | - |
4H-SiC [86] | 60 | Negligible | 1545 | - |
Ta2O5 [91] | 72 | Negligible | 800 | - |
Non-stoichiometric SiN [76] | 140 | Negligible | 1550 | - |
Chalcogenides [106] | 370 | Negligible | 1550 | - |
Crystalline Si [73] | 400 | 0.8 | 1540 | 0.32 |
a-SiC [87] | 480 | Negligible | 1550 | - |
Deuterated silicon-rich nitride [81] | 980 | Negligible | 1550 | - |
GaP [99] | 1100 | Negligible | 1550 | - |
AlGaAs [94] | 1500 | 0.05 | 1550 | 19 |
Graphene/Si hybrid waveguide [98] | 2000 | 0.5 | 1548 | 2.6 |
a-Si:H [82] | 4200 | 4.1 | 1550 | 0.7 |
GaAs/AlAs superlattice waveguides [97] | 5500 | 4 | 1505 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirleto, L.; Righini, G.C. An Introduction to Nonlinear Integrated Photonics Devices: Nonlinear Effects and Materials. Micromachines 2023, 14, 604. https://doi.org/10.3390/mi14030604
Sirleto L, Righini GC. An Introduction to Nonlinear Integrated Photonics Devices: Nonlinear Effects and Materials. Micromachines. 2023; 14(3):604. https://doi.org/10.3390/mi14030604
Chicago/Turabian StyleSirleto, Luigi, and Giancarlo C. Righini. 2023. "An Introduction to Nonlinear Integrated Photonics Devices: Nonlinear Effects and Materials" Micromachines 14, no. 3: 604. https://doi.org/10.3390/mi14030604
APA StyleSirleto, L., & Righini, G. C. (2023). An Introduction to Nonlinear Integrated Photonics Devices: Nonlinear Effects and Materials. Micromachines, 14(3), 604. https://doi.org/10.3390/mi14030604