An Introduction to Nonlinear Integrated Photonics: Structures and Devices
Abstract
:1. Introduction
2. Integrated Photonic Structures
2.1. Optical 2D and 3D Waveguides
2.2. Microresonators and Photonic Crystals
3. Material Platforms for Nonlinear Integrated Photonics
4. Nonlinear Photonics Devices
4.1. All-Optical Digital Devices: Switches, Gates, Flip-Flop Units, and Optical Transistors
4.2. All-Optical Processing
4.2.1. Signal Amplification
4.2.2. Frequency Conversion
- (i)
- C-band wavelength conversion in Si photonic wire waveguides with submicron cross-section was demonstrated by means of nondegenerate FWM (see Figure 10 of [157]). The nonresonant character of the FWM enabled demonstrating frequency tuning of the idler from ∼20 GHz to >100 GHz, thus covering several C-band DWDM channels.
- (ii)
- Conversion bandwidths greater than 150 nm and peak conversion efficiencies of −9.6 dB were also achieved via FWM and appropriate engineering in silicon nanowaveguides [158]. Furthermore, utilizing fourth-order dispersion, wavelength conversion across telecommunication bands from 1477 nm (S-band) to 1672 nm (U-band) was demonstrated with an efficiency of −12 dB.
- (iii)
- A wavelength conversion bandwidth of 190 nm with an efficiency of 21 dB, obtained by FWM in polymer (PMMA)-cladded chalcogenide (As2Se3) hybrid microwires, was achieved [159]. Wavelength conversion combined with small footprint (10 cm length), low loss (<4 dB), ease of fabrication, and the transparency of As2Se3 from near-to-mid-infrared regions make the proposed device very promising.
4.2.3. All-Optical Signal Regeneration
4.3. Nonlinear Sources
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nagarajan, R.; Joyner, C.H.; Schneider, R.P.; Bostak, J.S.; Butrie, T.; Dentai, A.G.; Dominic, V. Large-scale photonic integrated circuits. IEEE J. Sel. Top. Quant. Electron. 2005, 11, 50–65. [Google Scholar] [CrossRef]
- Thylén, L.; Wosinski, L. Integrated photonics in the 21st century. Photon. Res. 2014, 2, 75–81. [Google Scholar] [CrossRef]
- Ji, X.; Liu, J.; He, J.; Wang, R.N.; Qiu, Z.; Riemensberger, J.; Kippenberget, T.J. Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun. Phys 2022, 5, 84. [Google Scholar] [CrossRef]
- Pelucchi, E.; Fagas, G.; Aharonovich, I.; Englund, D.; Figueroa, E.; Gong, Q.; Hannes, H.; Liu, J.; Lu, C.Y.; Matsuda, N.; et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 2022, 4, 194–208. [Google Scholar] [CrossRef]
- Stegeman, G.I.; Seaton, C.T. Nonlinear integrated optics. J. Appl. Phys. 1985, 58, R57–R78. [Google Scholar] [CrossRef]
- Gibbs, H.M.; Khitrova, G.; Peyghambarian, N. Nonlinear Photonics; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Chen, Z.; Morandotti, R. Nonlinear Photonics and Novel Optical Phenomena; Springer: New York, NY, USA, 2012. [Google Scholar]
- Hendrickson, S.M.; Foster, A.C.; Camacho, R.M.; Clader, B.D. Integrated nonlinear photonics: Emerging applications and ongoing challenges. J. Opt. Soc. Am. B 2014, 31, 3193–3203. [Google Scholar] [CrossRef]
- Smirnova, D.; Leykam, D.; Chong, Y.; Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 2020, 7, 021306. [Google Scholar] [CrossRef]
- Eggleton, B.J.; Vo, T.; Pant, R.; Schr, J.; Pelusi, M.; Choi, D.Y.; Madden, S.; Luther-Davies, B. Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides. Laser Photonics Rev. 2012, 6, 97–114. [Google Scholar] [CrossRef]
- Nonlinear integrated photonics: Current status and future trends, Special Issue. Photonics Res. 2018, 6, 346–484.
- Koshelev, K.; Kruk, S.; Melik-Gaykazyan, E.; Jae-Hyuck Choi, J.H.; Andrey Bogdanov, A.; Hong-Gyu Park, H.-G.; Kivshar, Y. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 2020, 367, 288–292. [Google Scholar] [CrossRef] [Green Version]
- Vlachos, K.; Raffaelli, C.; Aleksic, S.; Andriolli, N.; Apostolopoulos, D.; Avramopoulos, H.; Erasme, D.; Klonidis, D.; Petersen, M.N.; Scaffardi, M.; et al. Photonics in switching: Enabling technologies and subsystem design. J. Opt. Netw. 2009, 8, 404–428. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Liu, X.; Wang, L.; Gong, Y.; Mao, D. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 2011, 19, 2910–2915. [Google Scholar] [CrossRef] [PubMed]
- Sederberg, S.; Driedger, D.; Nielsen, M.; Elezzabi, A.Y. Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator. Opt. Express 2011, 19, 23494–23503. [Google Scholar] [CrossRef] [PubMed]
- Pelc, J.S.; Rivoire, K.; Vo, S.; Santori, C.; Fattal, D.A.; Beausoleil, R.G. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators. Opt. Express 2014, 22, 3797–3810. [Google Scholar] [CrossRef] [Green Version]
- Bohn, J.; Luk, T.S.; Tollerton, C.; Hutchings, S.W.; Brener, I.; Horsley, S.; Barnes, W.L.; Hendry, E. All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide. Nat. Commun. 2021, 12, 1017. [Google Scholar] [CrossRef]
- Grinblat, G.; Zhang, H.; Nielsen, M.P.; Krivitsky, L.; Berté, R.; Li, Y.; Tilmann, B.; Cortés, E.; Oulton, R.F.; Kuznetsov, A.I.; et al. Efficient Ultrafast All-Optical Modulation in a Nonlinear Crystalline Gallium Phosphide Nanodisk at the Anapole Excitation. Sci. Adv. 2020, 6, eabb3123. [Google Scholar] [CrossRef]
- Tsuda, H.; Kurokawa, T. Construction of an all-optical flip-flop by combination of two optical triodes. Appl. Phys. Lett. 1990, 57, 1724. [Google Scholar] [CrossRef]
- Notomi, M.; Shinya, A.; Mitsugi, S.; Kira, G.; Kuramochi, E.; Tanabe, T. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 2005, 13, 2678–2687. [Google Scholar] [CrossRef]
- Wu, Y.-D.; Shih, T.T.; Chen, M.-H. New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer. Opt. Express 2008, 16, 248–257. [Google Scholar] [CrossRef]
- Fushimi, A.; Tanabe, T. All-optical logic gate operating with single wavelength. Opt. Express 2014, 22, 4466–4479. [Google Scholar] [CrossRef]
- Xiaoyu, Y.; Xiaoyong, H.; Hong, Y.; Qihuang, G. Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics 2017, 6, 365–376. [Google Scholar]
- Jandieri, V.; Khomeriki, R.; Onoprishvili, T.; Werner, D.H.; Berakdar, J.; Erni, D. Functional all-optical logic gates for true time-domain signal processing in nonlinear photonic crystal waveguides. Opt. Express 2020, 28, 18317–18331. [Google Scholar] [CrossRef]
- Anagha, E.G.; Jeyachitra, R.K. Review on all-optical logic gates: Design techniques and classifications—Heading toward high-speed optical integrated circuits. Opt. Eng. 2022, 61, 060902. [Google Scholar] [CrossRef]
- Thankaraj, B.S.; Ramasamy, A. Revolution of optical computing logic gates based on its applications: An extensive survey. Opt. Eng. 2022, 61, 110901. [Google Scholar] [CrossRef]
- Jiao, S.M.; Liu, J.W.; Zhang, L.W.; Yu, F.H.; Zuo, G.M.; Zhang, J.; Zhao, F.; Lin, W.; Shao, L. All-optical logic gate computing for high-speed parallel information processing. Opto-Electron. Sci. 2022, 1, 220010. [Google Scholar] [CrossRef]
- Guo, Y.; Kao, C.K.; Li, H.E.; Chiang, K.S. Nonlinear Photonics: Nonlinearities in Optics, Optoelectronics and Fiber Communications; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Radic, S.; Moss, D.J.; Eggleton, B.J. Nonlinear optics in communications: From crippling impairment to ultrafast tools. In Optical Fiber Telecommunications. Volume A: Components and Subsystems; Kaminow, I.P., Li, T., Willner, A.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Khulbe., M.; Kumar, S. Role of Nonlinear Optics in Big data transmission and Next Generation Computing Technologies. In Proceedings of the 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 10–11 January 2019; pp. 234–238. [Google Scholar]
- Yoo, S.J.B. Wavelength conversion technologies for WDM network applications. J. Light. Technol. 1996, 14, 955–966. [Google Scholar] [CrossRef]
- Caspani, L.; Duchesne, D.; Dolgaleva, K.; Wagner, S.J.; Ferrera, M.; Razzari, L.; Pasquazi, A.; Peccianti, M.; Moss, D.J.; Aitchison, J.S.; et al. Optical frequency conversion in integrated devices. J. Opt. Soc. Am. B 2011, 28, A67–A82. [Google Scholar] [CrossRef] [Green Version]
- Petrillo, K.G.; Foster, M.A. Full 160-Gb/s OTDM to 16x10-Gb/s WDM conversion with a single nonlinear interaction. Opt. Express 2013, 21, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Lacava, C.; Ettabib, M.; Cristiani, I.; Fedeli, J.; Richardson, D.; Petropoulos, P. Ultra-Compact Amorphous Silicon Waveguide for Wavelength Conversion. IEEE Photonics Technol. Lett. 2016, 28, 410–414. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Chen, X. Nonlinear wave mixing in lithium niobate thin film. Adv. Phys. X 2021, 6, 1889402. [Google Scholar] [CrossRef]
- Long, Y.; Wang, A.; Zhou, L.; Wang, J. All-optical wavelength conversion and signal regeneration of PAM-4 signal using a silicon waveguide. Opt. Express 2016, 24, 7158–7167. [Google Scholar] [CrossRef]
- Guo, B.; Wu, B.; Wang, Y.; Wen, F.; Geng, Y.; Zhou, H.; Qiu, K. On-chip Mach Zehnder interferometer-based all-optical amplitude regenerator for optical 16-QAM signals. Opt. Express 2021, 29, 27683–27695. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Iadicicco, A.; Agrawal, N.; Saha, C.; Chauhan, R. A compact formulation of all optical signal router by using plasmonic waveguides. Opt. Quant. Electron. 2022, 54, 478. [Google Scholar] [CrossRef]
- Mateo, E.F.; Liñares, J. A phase insensitive all-optical router based on nonlinear lenslike planar waveguides. Opt. Express 2005, 13, 3355–3370. [Google Scholar] [CrossRef]
- Yan, Z.; He, H.; Liu, H.; Iu, M.; Ahmed, O.; Chen, E.; Blakey, P.; Akasaka, Y.; Ikeuchi, T.; Helmy, A.S. χ(2)-based AlGaAs phase sensitive amplifier with record gain, noise, and sensitivity. Optica 2022, 9, 56–60. [Google Scholar] [CrossRef]
- Pelusi, M.; Ta’Eed, V.; Lamont, M.; Madden, S.; Choi, D.-Y.; Luther-Davies, B.; Eggleton, B. Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing. IEEE Photonics Technol. Lett. 2007, 19, 1496–1498. [Google Scholar] [CrossRef]
- Palushani, E.; Hansen Mulvad, H.; Galili, M.; Hu, H.; Oxenlowe, L.K.; Clausen, A.T.; Jeppesen, P. OTDM-to-WDM conversion based on time-to frequency mapping by time-domain optical Fourier transformation. IEEE J. Sel. Top. Quant. Electron. 2012, 18, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Hansen Mulvad, H.C.; Palushani, E.; Hu, H.; Ji, H.; Lillieholm, M.; Galili, M.; Clausen, A.T.; Pu, M.; Yvind, K.; Hvam, J.M.; et al. Ultra-high-speed optical serial-to-parallel data conversion by time domain optical Fourier transformation in a silicon nanowire. Opt. Express 2011, 19, B825–B835. [Google Scholar]
- Luo, L.W.; Ophir, N.; Chen, C.P.; Gabrielli, L.H.; Poitras, C.B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 2014, 5, 3069. [Google Scholar] [CrossRef] [Green Version]
- Jansen, S.L.; Morita, I.; Schenk, T.C.; Tanaka, H. Long-haul transmission of16×52.5 Gbits/s polarization-division- multiplexed OFDM enabled by MIMO processing (Invited). J. Opt. Netw. 2008, 7, 173–182. [Google Scholar] [CrossRef]
- Tanabe, T.; Notomi, M.; Shinya, A.; Mitsugi, S.; Kuramochi, E. Fast bistable all-optical switch and memory on silicon photonic crystal on-chip. Opt. Lett. 2005, 30, 2575–2577. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.T.; Dorren, H.J.S.; Vries, T.; Leijtens, X.J.M.; Besten, J.H.; Smalbrugge, B.; Oei, Y.-S.; Binsma, H.; Khoe, G.-D.; Smit, M.K. A fast low-power optical memory based on coupled micro-ring lasers. Nature 2004, 432, 206–209. [Google Scholar] [CrossRef]
- Kowsari, A.; Ahmadi, V.; Darvish, G.; Moravvej-Farshi, M.K. All-optical tunable delay line based on nonlinearities in a chalcogenide microfiber coil resonator. J. Opt. Soc. Am. B 2017, 34, 1199–1205. [Google Scholar] [CrossRef]
- Liu, F.; Li, Q.; Zhang, Z.; Qiu, M.; Su, Y. Optically Tunable Delay Line in Silicon Microring Resonator Based on Thermal Nonlinear Effect. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 706–712. [Google Scholar] [CrossRef]
- Leclerc, O.; Lavigne, B.; Balmefrezol, E.; Brindel, P.; Pierre, L.; Rouvillain, D.; Seguineau, F. Optical regeneration at 40Gb/s and beyond. J. Light. Technol. 2003, 21, 2779–2790. [Google Scholar] [CrossRef]
- Ciaramella, E. Wavelength Conversion and All-Optical Regeneration: Achievements and Open Issues. J. Light. Technol. 2012, 30, 572–582. [Google Scholar] [CrossRef]
- Koos, C.; Jacome, L.; Poulton, C.; Leuthold, J.; Freude, W. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 2007, 15, 5976–5990. [Google Scholar] [CrossRef] [Green Version]
- Willner, A.E.; Yilmaz, O.F.; Wang, J.; Wu, X.; Bogoni, A.; Zhang, L.; Nuccio, S.R. Optically Efficient Nonlinear Signal Processing. IEEE J. Sel. Top. Quant. Electron. 2011, 17, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Wabnitz, S.; Eggleton, B.J. All-Optical Signal Processing; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Lacava, C.; Ettabib, M.A.; Petropoulos, P. Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks. Appl. Sci. 2017, 7, 103. [Google Scholar] [CrossRef]
- Wang, J.; Long, Y. On-chip silicon photonic signaling and processing: A review. Sci. Bull. 2018, 63, 1267–1310. [Google Scholar] [CrossRef] [Green Version]
- Minzioni, P.; Lacava, C.; Tanabe, T.; Dong, J.; Hu, X.; Csaba, G.; Porod, W.; Singh, G.; Willner, A.E.; Almaiman, A.; et al. Roadmap on all-optical processing. J. Opt. 2019, 21, 063001. [Google Scholar] [CrossRef]
- Chang, L.; Boes, A.; Shu, H.; Xie, W.; Huang, H.; Qin, J.; Shen, B.; Wang, X.; Mitchell, A.; Bowers, J.E.L. Second Order Nonlinear Photonic Integrated Platforms for Optical Signal Processing. IEEE J. Sel. Top. Quant. Electron. 2021, 27, 1–11. [Google Scholar] [CrossRef]
- Huang, C.; Jha, A.; Ferreira de Lima, T.; Tait, A.N.; Shastri, B.J.; Prucnal, P.R. On-Chip Programmable Nonlinear Optical Signal Processor and Its Applications. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 6100211. [Google Scholar] [CrossRef]
- Dudley, J.M.; Genty, G.; Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 2006, 78, 1135–1184. [Google Scholar] [CrossRef]
- Gaeta, A.L.; Lipson, M.; Kippenberg, T.J. Photonic-chip-based frequency combs. Nat. Photonics 2019, 13, 158–169. [Google Scholar] [CrossRef]
- Sirleto, L.; Righini, G.C. An Introduction to Nonlinear Integrated Photonics Devices: Nonlinear effects and materials. Micromachines 2023, 14, 604. [Google Scholar] [CrossRef]
- Selvaraja, S.K.; Sethi, P. Review on Optical Waveguides. In Emerging Waveguide Technology; You, K.Y., Ed.; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, K. Fundamentals of Optical Waveguides, 3rd ed.; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Tsuchizawa, T.; Yamada, K.; Fukuda, H.; Watanabe, T.; Takahashi, J.; Takahashi, M.; Shoji, T.; Tamechika, E.; Itabashi, S.; Morita, H. Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quant. Electr. 2005, 11, 232–240. [Google Scholar] [CrossRef]
- Gerard, J.-M.; Sermage, B.; Gayral, B.; Legrand, B.; Costard, E.; Thierry-Mieg, V. Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity. Phys. Rev. Lett. 1998, 81, 1110–1113. [Google Scholar] [CrossRef]
- Reithmaier, J.P.; Sęk, G.; Loer, A.; Hofmann, C.; Kühn, S.; Reitzenstein, S.; Keldysh, L.V.; Kulakovskii, V.D.; Reinecke, T.L.; Forchel, A. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 2004, 432, 197–200. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Recent advances in photonic crystal optical devices: A review. Opt. Laser Technol. 2021, 142, 107265. [Google Scholar] [CrossRef]
- Bravo-Abad, J.; Rodriguez, A.; Bermel, P.; Johnson, S.G.; Joannopoulos, J.D.; Soljačić, M. Enhanced nonlinear optics in photonic-crystal microcavities. Opt. Express 2007, 15, 16161–16176. [Google Scholar] [CrossRef] [PubMed]
- Righini, G.C.; Dumeige, Y.; Féron, P.; Ferrari, M.; Nunzi Conti, G.; Ristic, D.; Soria, S. Whispering gallery mode microresonators: Fundamentals and applications. Riv. Nuovo Cim. 2011, 34, 435–488. [Google Scholar]
- Frigenti, G.; Farnesi, D.; Nunzi Conti, G.; Soria, S. Nonlinear Optics in Microspherical Resonators. Micromachines 2020, 11, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.; Coillet, A.; Chembo, Y.K. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon. 2017, 9, 828–890. [Google Scholar] [CrossRef]
- Suhailin, F.H.; Healy, N.; Franz, Y.; Sumetsky, M.; Ballato, J.; Dibbs, A.N.; Gibson, U.J.; Peacock, A.C. Kerr nonlinear switching in a hybrid silica-silicon microspherical resonator. Opt. Express 2015, 23, 17263–17268. [Google Scholar] [CrossRef] [Green Version]
- Strekalov1, D.V.; Marquardt, C.; Matsko, A.B.; Harald, G.L.; Schwefel, H.G.L.; Leuchs, G. Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 2016, 18, 123002. [Google Scholar] [CrossRef] [Green Version]
- Kuo, P.; Bravo-Abad, J.; Solomon, G. Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity. Nat. Com. 2014, 5, 3109. [Google Scholar] [CrossRef] [Green Version]
- Rostami, A.; Ahmadi, H.; Heidarzadeh, H.; Taghipour, A. Microsphere and Fiber Optics based Optical Sensors. In Optical Sensors—New Developments and Practical Applications; Yasin, M., Harun, S.W., Arof, H., Eds.; IntechOpen: Rijeka, Croatia, 2014. [Google Scholar]
- Slusher, R.E.; Eggleton, B.J. Nonlinear Photonic Crystals; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Vlasov, Y.A.; Boyle, M.O.; Hamann, H.F.; McNab, S.J. Active control of slow light on a chip with photonic crystal waveguides. Nature 2005, 438, 65–69. [Google Scholar] [CrossRef]
- Soljačić, M.; Joannopoulous, J.D. Enhancement of nonlinear effect using photonic crystals. Nat. Mater. 2004, 3, 212–219. [Google Scholar] [CrossRef]
- Zhang, Y.; Sheng, Y.; Zhu, S.; Xiao, M.; Krolikowski, W. Nonlinear photonic crystals: From 2D to 3D. Optica 2021, 8, 372–381. [Google Scholar] [CrossRef]
- Pan, J.; Fu, M.; Yi, W.; Wang, X.; Liu, J.; Zhu, M.; Qi, J.; Yin, S.; Huang, G.; Zhu, S.; et al. Improving Low-Dispersion Bandwidth of the Silicon Photonic Crystal Waveguides for Ultrafast Integrated Photonics. Photonics 2021, 8, 105. [Google Scholar] [CrossRef]
- Bozhevolnyi, S.I.; Volkov, V.S.; Devaux, E.; Laluet, J.-Y.; Ebbesen, T.W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006, 440, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Holmström, P.; Thylén, L.; Bratkovsky, A. Composite metal/ quantum-dot nanoparticle-array waveguides with compensated loss. Appl. Phys. Lett. 2010, 97, 073110. [Google Scholar] [CrossRef]
- Prasad, P.N. Nanophotonics; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Haus, J.W. Fundamentals and Applications of Nanophotonics; Woodhead: Sawston, UK, 2016. [Google Scholar]
- Zheludev, N.I. Nonlinear optics on the nano scale. Contemp. Phys. 2010, 43, 365–377. [Google Scholar] [CrossRef]
- Suresh, S.; Arivuoli, D. Nanomaterials for nonlinear optical applications: A review. Rev. Adv. Mater. Sci. 2012, 30, 243–253. [Google Scholar]
- Ganeev, R. Nanostructured Nonlinear Optical Materials, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Panoiu, N.C.; Sha, W.E.I.; Lei, D.Y.; Li, G.-C. Nonlinear optics in plasmonic nanostructures. J. Opt. 2018, 20, 083001. [Google Scholar] [CrossRef] [Green Version]
- Tuniz, A. Nanoscale nonlinear plasmonics in photonic waveguides and circuits. Riv. Nuovo Cim. 2021, 44, 193–249. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef] [Green Version]
- Staude, I.; Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photon. 2017, 11, 274–284. [Google Scholar] [CrossRef]
- Yang, Z.J.; Jiang, R.; Zhuo, X.; Xie, Y.-M.; Wang, J.; Lin, H.-Q. Dielectric nanoresonators for light manipulation. Phys. Rep. 2017, 701, 1–50. [Google Scholar] [CrossRef]
- Kruk, S.; Kivshar, Y.S. Functional meta-optics and nanophotonics governed by Mie resonances. ACS Photonics 2017, 4, 2638–2649. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shi, X.; Zhang, Z.; Guo, K.; Yang, J. Ultra-compact, efficient and high-polarization-extinction-ratio polarization beam splitters based on photonic anisotropic metamaterials. Opt. Express 2022, 30, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vukcović, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018, 122, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Vercruysse, D.; Sapra, N.V.; Yang, K.Y.; Vučković, J. Inverse-Designed Photonic Crystal Circuits for Optical Beam Steering. ACS Photonics 2021, 8, 3085–3093. [Google Scholar] [CrossRef]
- Yang, K.Y.; Shirpurkar, C.; White, A.D.; Zang, J.; Chang, L.; Ashtiani, F.; Guidry, M.A.; Lukin, D.M.; Pericherla, S.V.; Yang, J. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun. 2022, 13, 7862. [Google Scholar] [CrossRef]
- Quaranta, G.; Basset, G.; Martin, O.J.; Gallinet, B. Recent advances in resonant waveguide grating. Laser Photonics Rev. 2018, 2, 1800017. [Google Scholar] [CrossRef]
- Yu, Z.; Xi, X.; Ma, J.; Tsang, H.K.; Zou, C.L.; Sun, X. Photonic integrated circuits with bound states in the continuum. Optica 2019, 6, 1342–1348. [Google Scholar] [CrossRef]
- Kivshar, Y. All-dielectric meta-optics and non-linear nanophotonics. Natl. Sci. Rev. 2018, 5, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Du, J. Metasurfaces for Spatial Light Manipulation. In Metamaterials-Devices and Applications; Borja, A.L., Ed.; Intech Open: Rijeka, Croatia, 2017. [Google Scholar]
- Bonacina, L.; Brevet, P.F.; Finazzi, M.; Celebrano, M. Harmonic generation at the nanoscale. J. Appl. Phys. 2020, 127, 230901. [Google Scholar] [CrossRef]
- Sain, B.; Meier, C.; Zentgraf, T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: A review. Adv. Photonics 2019, 1, 024002. [Google Scholar] [CrossRef] [Green Version]
- Raghunathan, V.; Deka, J.; Menon, S.; Biswas, R.; A.S, L.K. Nonlinear Optics in Dielectric Guided-Mode Resonant Structures and Resonant Metasurfaces. Micromachines 2020, 11, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capasso, F.; Sirtori, C.; Faist, J.; Sivco, D.L.; Sung-Nee, G.; Chu, S.-N.-G.; Cho, A.Y. Observation of an electronic bound state above a potential well. Nature 1992, 358, 565–567. [Google Scholar] [CrossRef]
- Marinica, D.; Borisov, A.; Shabanov, S. Bound states in the continuum in photonics. Phys. Rev. Lett. 2008, 100, 183902. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef] [Green Version]
- Haoye, Q.; Xiaodong, S.; Haiyan, O. Exceptional points at bound states in the continuum in photonic integrated circuits. Nanophotonics 2022, 11, 4909–4917. [Google Scholar]
- Ye, F.; Yu, Y.; Xi, X.; Sun, X. Second-harmonic generation in etchless lithium niobate nanophotonic waveguides with bound states in the continuum. Laser Photon. Rev. 2021, 11, 2100429. [Google Scholar]
- Han, Z.; Ding, F.; Cai, Y.; Levy, U. Significantly enhanced second-harmonic generations with all-dielectric antenna array working in the quasi-bound states in the continuum and excited by linearly polarized plane waves. Nanophotonics 2021, 10, 1189–1196. [Google Scholar] [CrossRef]
- Zhang, X.; He, L.; Gan, X.; Huang, X.; Du, Y.; Zhai, Z.; Li, Z.; Zheng, Y.; Chen, X.; Cai, Y.; et al. Quasi-Bound States in the Continuum Enhanced Second-Harmonic Generation in Thin-Film Lithium Niobate. Laser Photonics Rev. 2022, 16, 2200031. [Google Scholar] [CrossRef]
- He, L.; Zhang, F.; Zhang, H.; Kong, L.-J.; Zhang, W.; Xu, X.; Zhang, X. Topology-Optimized Ultracompact All-Optical Logic Devices on Silicon Photonic Platforms. ACS Photonics 2022, 9, 597–604. [Google Scholar] [CrossRef]
- Margalit, N.; Xiang, C.; Bowers, S.M.; Bjorlin, A.; Blum, R.; Bowers, J.E. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 2021, 118, 220501. [Google Scholar] [CrossRef]
- Osgood, R.M.; Panoiu, N.C.; Dadap, J.I.; Liu, X.; Chen, X.; Hsieh, I.-W.; Dulkeith, E.; Green, W.M.J.; Vlasov, Y.A. Engineering nonlinearities in nanoscale optical systems: Physics and applications in dispersion-engineered silicon nanophotonic wires. Adv. Opt. Photon. 2009, 1, 162–235. [Google Scholar] [CrossRef]
- Leuthold, J.; Koos, C.; Freude, W. Nonlinear silicon photonics. Nat. Photonics 2010, 4, 535–544. [Google Scholar] [CrossRef]
- Nikdast, M.; Pasricha, S.; Nicolescu, G.; Seyedi, A.; Liang, D. Silicon Photonics for High-Performance Computing and Beyond; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Saeidi, S.; Awan, K.M.; Sirbu, L.; Dolgaleva, K. Nonlinear photonics on-a-chip in III-V semiconductors: Quest for promising material candidates. Appl. Opt. 2017, 56, 5532–5541. [Google Scholar] [CrossRef] [PubMed]
- Vyas, K.; Espinosa, D.H.G.; Hutama, D.; Jain, S.K.; Mahjoub, R.; Mobini, E.; Awan, K.M.; Lundeen, J.; Dolgaleva, K. Group III-V semiconductors as promising nonlinear integrated photonic platforms. Adv. Phys. X 2022, 7, 2097020. [Google Scholar] [CrossRef]
- Mobini, E.; Espinosa, D.H.G.; Vyas, K.; Dolgaleva, K. AlGaAs Nonlinear Integrated Photonics. Micromachines 2022, 13, 991. [Google Scholar] [CrossRef]
- Liu, X.; Sun, C.; Xiong, B.; Wang, L.; Wang, J.; Wang, Y.; Hao, Z.; Li, H.; Luo, Y.; Yan, J.; et al. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators. Opt. Express 2017, 25, 587. [Google Scholar] [CrossRef]
- Liu, J.; Weng, H.; Afridi, A.A.; Li, J.; Dai, J.; Ma, X.; Long, H.; Zhang, Y.; Lu, Q.; Donegan, J.F.; et al. Photolithography allows high-Q AlN microresonators for near octave-spanning frequency comb and harmonic generation. Opt. Express 2020, 28, 19270. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.; Ryu, K.; Schuck, C.; Fong, K.Y.; Palacios, T.; Tang, H.X. Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt. Express 2011, 19, 10462–10470. [Google Scholar] [CrossRef] [Green Version]
- Lake, D.P.; Mitchell, M.; Jayakumar, H.; dos Santos, L.F.; Curic, D.; Barclay, P.E. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks. Appl. Phys. Lett. 2016, 108, 031109. [Google Scholar] [CrossRef] [Green Version]
- Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Luo, R.; Jiang, H.; Rogers, S.; Liang, H.; He, Y.; Lin, Q. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 2017, 25, 24531–24539. [Google Scholar] [CrossRef] [PubMed]
- Bazzan, M.; Sada, C. Optical waveguides in lithium niobate: Recent developments and applications. Appl. Phys. Rev. 2015, 2, 40603. [Google Scholar] [CrossRef] [Green Version]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Vazimali, M.G.; Fathpour, S. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics 2022, 4, 034001. [Google Scholar] [CrossRef]
- Kaur, P.; Boes, A.; Ren, G.; Nguyen, T.G.; Roelkens, G.; Mitchell, A. Hybrid and heterogeneous photonic integration. APL Photonics 2021, 6, 061102. [Google Scholar] [CrossRef]
- Fathpour, S. Heterogeneous Nonlinear Integrated Photonics. IEEE J. Quantum Electron. 2018, 54, 6300716. [Google Scholar] [CrossRef]
- Fathpour, S. Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics 2015, 4, 143–164. [Google Scholar] [CrossRef]
- Xing, P.; Ma, D.; Ooi, K.J.; Choi, J.W.; Agarwal, A.M.; Tan, D. CMOS-compatible PECVD silicon carbide platform for linear and nonlinear optics. ACS Photonics 2019, 6, 1162–1167. [Google Scholar] [CrossRef]
- Castelletto, S.; Rosa, L.; Johnson, B.C. Silicon carbide for novel quantum technologies devices. In Advanced Silicon Carbide Devices and Processing; Chapter 9; Saddow, S., La Via, F., Eds.; Intech Open: London, UK, 2015. [Google Scholar]
- Guidry, M.A.; Yang, K.Y.; Lukin, D.M.; Markosyan, A.; Yang, J.; Fejer, M.M.; Vučković, J. Optical parametric oscillation in silicon carbide nanophotonics. Optica 2020, 7, 1139–1142. [Google Scholar] [CrossRef]
- Cai, L.; Li, J.; Wang, R.; Li, Q. Octave-spanning microcomb generation in 4H-silicon-carbide-on-insulator photonics platform. Photon. Res. 2022, 10, 870–876. [Google Scholar] [CrossRef]
- Carroll, L.; Lee, J.-S.; Scarcella, C.; Gradkowski, K.; Duperron, M.; Lu, H.; Zhao, Y.; Eason, C.; Morrissey, P.; Rensing, M. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Appl. Sci. 2016, 6, 426. [Google Scholar] [CrossRef] [Green Version]
- Sasikala, V.; Chitra, K. All optical switching and associated technologies: A review. J. Opt. 2018, 47, 307–317. [Google Scholar] [CrossRef]
- Chhipa, M.K.; Madhav, B.T.P.; Suthar, B. An all-optical ultracompact microring-resonator-based optical switch. J. Comput. Electron. 2021, 20, 419–425. [Google Scholar] [CrossRef]
- Kuramochi, E.; Nozaki, K.; Shinya, A.; Takeda, K.; Sato, T.; Matsuo, S.; Taniyama, H.; Sumikura, H.; Notomj, M. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat. Photonics 2014, 8, 474–481. [Google Scholar] [CrossRef]
- Colman, P.; Lunnemann, P.; Yu, Y.; Mørk, J. Ultrafast coherent dynamics of a photonic crystal all-optical switch. Phys. Rev. Lett. 2016, 117, 233901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takiguchi, M.; Takemura, N.; Tateno, K.; Nozaki, K.; Sasaki, S.; Sergent, S.; Kuramochi, E.; Wasawo, T.; Yokoo, A.; Shinya, A.; et al. All-optical InAsP/InP nanowire switches integrated in a Si photonic crystal. ACS Photonics 2020, 7, 1016–1021. [Google Scholar] [CrossRef]
- Ono, M.; Hata, M.; Tsunekawa, M.; Nozaki, K.; Sumikura, H.; Chiba, H.; Notomi, M. Ultrafast and energy efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics 2020, 14, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Keyes, R.W. Optical logic-in the light of computer technology. Opt. Acta Int. J. Opt. 1985, 32, 525–535. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.Y. Ultracompact linear on-chip silicon optical logic gates with phase insensitivity. EPL 2013, 103, 64001. [Google Scholar] [CrossRef]
- Xiong, M.; Lei, L.; Ding, Y.; Huang, B.; Ou, H.; Peucheret, C.; Zhang, X. All-optical 10 Gb/s AND logic gate in a silicon microring resonator. Opt. Express 2013, 21, 25772–25779. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.H.; Wang, C.; Li, Z. Design of on-chip optical logic gates in 2D silicon photonic crystal slab. Opt. Rev. 2020, 27, 277–282. [Google Scholar] [CrossRef]
- Zarei, S.; Khavasi, A. Realization of optical logic gates using on-chip diffractive optical neural networks. Sci. Rep. 2022, 12, 15747. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.A. Are optical transistors the logical next step? Nat. Photon. 2010, 4, 3–5. [Google Scholar] [CrossRef]
- Gibbs, H.M. Optical Bistability: Controlling Light with Light; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Hwang, J.; Pototschnig, M.; Lettow, R.; Zumofen, G.; Renn, A.; Götzinger, S.; Sandoghdar, V. A single-molecule optical transistor. Nature 2009, 460, 76–80. [Google Scholar] [CrossRef]
- Fushman, I.; Englund, D.; Faraon, A.; Stoltz, N.; Petroff, P.; Vuckovic, J. Controlled Phase Shifts with a Single Quantum Dot. Science 2008, 320, 769–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, M.A.; Turner, A.C.; Sharping, J.E.; Schmidt, B.S.; Lipson, M.; Gaeta, A.L. Broad-band optical parametric gain on a silicon photonic chip. Nature 2006, 441, 960–963. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Osgood, R.M.; Vlasov, J.A.; Green, W.M.J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photon. 2010, 4, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Ooi, K.J.A.; Ng, D.K.T.; Wang, T.; Chee, A.K.L.; Ng, S.K.; Wang, Q.; Ang, L.K.; Agarwal, A.M.; Kimerling, L.C.; Tan, D.T.H. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun. 2017, 8, 13878. [Google Scholar] [CrossRef] [Green Version]
- Davenport, M.L.; Skendzic, S.; Volet, N.; Bowers, J.E. Heterogeneous silicon/InP semiconductor optical amplifiers with high gain and high saturation power. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Espinola, R.L.; Dadap, J.I.; Osgood, R.M.; McNab, S.J.; Vlasov, Y. C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express 2005, 13, 4341–4349. [Google Scholar] [CrossRef]
- Foster, M.A.; Turner, A.C.; Salem, R.; Lipson, M.; Gaeta, A.L. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express 2007, 15, 12949–12958. [Google Scholar] [CrossRef]
- Ahmad, R.; Rochette, M. High efficiency and ultra-broadband optical parametric four-wave mixing in chalcogenide-PMMA hybrid microwires. Opt. Express 2012, 20, 9572–9580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yue, Y.; Beausoleil, R.G.; Willner, A.E. Flattened dispersion in silicon slot waveguides. Opt. Express 2010, 18, 20529–20534. [Google Scholar] [CrossRef]
- Bao, C.; Yan, Y.; Zhang, L.; Yue, Y.; Ahmed, N.; Agarwal, A.M.; Kimerling, L.C.; Michel, J.; Willner, A.E. Increased bandwidth with flattened and low dispersion in a horizontal double-slot silicon waveguide. J. Opt. Soc. Am. B 2015, 32, 26–30. [Google Scholar] [CrossRef]
- Guo, K.; Lin, L.; Christensen, J.B.; Christensen, E.N.; Shi, X.; Ding, Y.; Rottwitt, K.; Ou, H. Broadband wavelength conversion in a silicon vertical-dual-slot waveguide. Opt. Express 2017, 25, 32964–32971. [Google Scholar] [CrossRef] [Green Version]
- Kernetzky, T.; Ronniger, G.; Höfler, U.; Zimmermann, L.; Hanik, N. Numerical Optimization and CW Measurements of SOI Waveguides for Ultra-Broadband C-to-O-Band Conversion. In Proceedings of the European Conference on Optical Communication (ECOC), Bordeaux, France, 13–16 September 2021; pp. 1–4. [Google Scholar]
- Hanik, N.; Kernetzky, T.; Jia, Y.; Höfler, U.; Freund, R.; Schubert, C.; Isaac Sackey, I.; Ronniger, G.; Zimmerman, L. Ultra-Broadband Optical Wavelength-Conversion using Nonlinear Multi-Modal Optical Waveguides. In Proceedings of the 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2022; pp. 832–835. [Google Scholar]
- Marty, G.; Combrié, S.; De Rossi, A.; Raineri, F. Hybrid InGaP nanobeam on silicon photonics for efficient four wave mixing. APL Photonics 2019, 4, 120801. [Google Scholar] [CrossRef]
- Pu, M.; Hu, H.; Ottaviano, L.; Semenova, E.; Vukovic, D.; Oxenløwe, L.K.; Yvind, K. Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing. Laser Photonics Rev. 2018, 12, 1800111. [Google Scholar] [CrossRef] [Green Version]
- Ong, J.R.; Kumar, R.; Mookherjea, S. Triply resonant four-wave mixing in silicon-coupled resonator microring waveguides. Opt. Lett. 2014, 39, 5653–5656. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Y.; Qu, Y.; Jia, L.; Zhang, Y.; Xu, X.; Chu, S.Y.; Little, B.E.; Morandotti, R.; Jia, B.; et al. 2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small 2020, 16, 1906563. [Google Scholar] [CrossRef] [Green Version]
- Ferrera, M.; Duchesne, D.; Razzari, L.; Peccianti, M.; Morandotti, R.; Cheben, P.; Janz, S.; Xu, D.-X.; Little, B.E.; Chu, S.; et al. Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. Opt. Express 2009, 17, 14098–14103. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Cai, H.; Deng, L.; Huang, Y.; Huang, Q.; Xia, J.; Li, Z.; Yu, J.; Wang, Y. Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator. Opt. Express 2015, 23, 18679–18685. [Google Scholar] [CrossRef]
- Winzer, P.; Essiambre, R. Advanced Modulation Formats for High-Capacity Optical Transport Network. J. Light. Technol. 2010, 24, 4711–4728. [Google Scholar] [CrossRef]
- Li, C.; Gui, C.; Xiao, X.; Yang, Q.; Yu, S.; Wang, J. On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide. Opt. Lett. 2014, 39, 4583–4586. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Liu, J.; Hu, X.; Wang, A.; Zhou, L.; Zou, K.; Zhu, Y.; Zhang, F.; Wang, J. All-optical multi-channel wavelength conversion of Nyquist 16 QAM signal using a silicon waveguide. Opt. Lett. 2015, 40, 5475–5478. [Google Scholar] [CrossRef]
- Adams, R.; Spasojevic, M.; Chagnon, M.; Malekiha, M.; Li, J.; Plant, D.V.; Chen, L.R. Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire. Opt. Express 2014, 22, 4083–4090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ta’eed, V.G.; Lamont, M.R.E.; Moss, D.J.; Eggleton, B.J.; Choi, D.Y.; Madden, S.; Luther-Davies, B. All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides. Opt. Express 2006, 14, 11242–11247. [Google Scholar] [CrossRef]
- Astar, W.; Driscoll, J.B.; Liu, X.; Dadap, J.I.; Green, W.M.J.; Vlasov, Y.A.; Carter, G.M.; Osgood, R.M. Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting. J. Light. Technol. 2010, 28, 2499–2511. [Google Scholar] [CrossRef]
- Huang, Z.; Cao, T.; Chen, L.; Yu, Y.; Zhang, X. Monolithic integrated chip with SOA and tunable DI for multichannel all-optical signal processing. IEEE Photonics J. 2018, 10, 6600709. [Google Scholar] [CrossRef]
- Chow, C.; Liu, Y. Nonlinear Photonic Signal Processing Subsystems and Applications. In Advances in Lasers and Electro Optics; IntechOpen: Rijeka, Croatia, 2010. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M. Fiber-Based All-Optical Signal Regeneration. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 738–752. [Google Scholar] [CrossRef]
- Ribeiro, N.S.; Gallep, C.M.; Conforti, E. Wavelength Conversion and 2R-Regeneration in Simple Schemes with Semiconductor Optical Amplifiers. In Advances in Lasers and Electro Optics; IntechOpen: Rijeka, Croatia, 2010. [Google Scholar] [CrossRef] [Green Version]
- Vercesi, V.; Porzi, C.; Contestabile, G.; Bogoni, A. Polarization-Independent All-Optical Regenerator for DPSK Data. Photonics 2014, 1, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Sobhanan, A.; Anthur, A.; O’Duill, S.; Pelusi, M.; Namiki, S.; Barry, L.; Venkitesh, D.; Agrawal, G.P. Semiconductor optical amplifiers: Recent advances and applications. Adv. Opt. Photon. 2022, 14, 571–651. [Google Scholar] [CrossRef]
- Ta’eed, V.G.; Shokooh-Saremi, M.; Fu, L.; Moss, D.J.; Rochette, M.; Eggleton, B.J.; Ruan, Y.; Luther-Davies, B. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 360–370. [Google Scholar] [CrossRef] [Green Version]
- Salem, R.; Foster, M.A.; Geraghty, D.F.; Gaeta, A.L.; Turner, A.C.; Lipson, M. Integrated Optical Regenerator on a Silicon Chip. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 6–11 May 2007; pp. 1–2. [Google Scholar] [CrossRef]
- Geng, Y.; Wu, B.; Wen, F.; Zhou, H.; Zhou, X.; Qiu, K. Clock-pump four-wave-mixing-based multichannel all-optical regeneration in silicon waveguide. Opt. Eng. 2017, 56, 117102. [Google Scholar] [CrossRef]
- Gajda, A.; Zimmermann, L.; Jazayerifar, M.; Winzer, G.; Tian, H.; Elschner, R.; Richter, T.; Schubert, C.; Tillack, B.; Petermann, K. Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction. Opt. Express 2012, 20, 13100–13107. [Google Scholar] [CrossRef] [PubMed]
- Da Ros, F.; Vukovic, D.; Gajda, A.; Dalgaard, K.; Zimmermann, L.; Tillack, B.; Galili, M.; Petermann, K.; Peucheret, C. Phase regeneration of DPSK signals in a silicon waveguide with reverse-biased p-i-n junction. Opt. Express 2014, 22, 5029–5036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, H.S.; Cui, J.B.; Zhou, H.; Chen, Y.F.; Jin, Y.; Xu, B.R.; Zhai, K.P.; Sun, J.Z.; Guo, Y.Y.; Wu, R.Y.; et al. 100 Gb/s NRZ OOK signal regeneration using four-wave mixing in a silicon waveguide with reverse-biased p-i-n junction. Opt. Express 2022, 30, 38077–38094. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lee, K.J.; Parmigiani, F.; Kakande, J.; Gallo, K.; Petropoulos, P.; Richardson, D.J. Phase-regenerative wavelength conversion in periodically poled lithium niobate waveguides. Opt. Express 2011, 19, 11705–11715. [Google Scholar] [CrossRef]
- Bogoni, A.; Wu, X.; Nuccio, S.R.; Willner, A.E. 640 Gb/s All-Optical Regenerator Based on a Periodically Poled Lithium Niobate Waveguide. J. Light. Technol. 2012, 30, 1829–1834. [Google Scholar] [CrossRef]
- Cao, Y.; Ziyadi, M.; Mohajerin-Ariaei, A.; Almaiman, A.; Liao, P.; Bao, C.; Alishahi, F.; Falahpour, A.; Shamee, B.; Yang, J.-Y.; et al. Reconfigurable optical inter-channel interference mitigation for spectrally overlapped QPSK signals using nonlinear wave mixing in cascaded PPLN waveguides. Opt. Lett. 2016, 41, 3233–3236. [Google Scholar] [CrossRef]
- Saini, T.S.; Sinha, R.K. Mid-infrared supercontinuum generation in soft-glass specialty optical fibers: A review. Prog. Quant. Electron. 2021, 78, 100342. [Google Scholar] [CrossRef]
- Hsieh, I.-W.; Chen, X.; Liu, X.; Dadap, J.I.; Panoiu, N.C.; Chou, C.-Y.; Xia, F.; Green, W.M.; Vlasov, Y.A.; Osgood, R.M. Supercontinuum generation in silicon photonic wires. Opt. Express 2007, 15, 15242–15249. [Google Scholar] [CrossRef]
- Krasavin, A.; Ginzburg, P.; Wurtz, G.; Zayats, A.V. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures. Nat. Commun. 2016, 7, 11497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del’Haye, P.; Schliesser, A.; Arcizet, O.; Wilken, T.; Holzwarth, R.; Kippenberg, T.J. Optical frequency comb generation from a monolithic microresonator. Nature 2007, 450, 1214–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kippenberg, T.J.; Holzwarth, R.; Diddams, S.A. Microresonator-based optical frequency combs. Science 2011, 332, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, F.; Miao, H.; Leaird, D.E.; Srinivasan, K.; Wang, J.; Chen, L.; Varghese, L.T.; Weiner, A.M. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photon. 2011, 5, 770–776. [Google Scholar] [CrossRef]
- Razzari, L.; Duchesne, D.; Ferrera, M.; Morandotti, R.; Chu, S.; Little, B.; Moss, D. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photon. 2010, 4, 41–45. [Google Scholar] [CrossRef]
- Zhang, M.; Buscaino, B.; Wang, C.; Shams-Ansari, A.; Reimer, C.; Zhu, R.; Kahn, J.M.; Lončar, M. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 2019, 568, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Yu, M.; Buscaino, B.; Sinclair, N.; Zhu, D.; Cheng, R.; Shams-Ansari, A.; Shao, L.; Zhang, M.; Kahn, J.M.; et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photon. 2022, 16, 679–685. [Google Scholar] [CrossRef]
- Levy, J.S.; Saha, K.; Okawachi, Y.; Foster, M.; Gaeta, A.; Lipson, M. High-performance silicon-nitride-based multiple-wavelength source. IEEE Photon. Technol. Lett. 2012, 24, 1375–1377. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.-H.; Ferdous, F.; Miao, H.; Wang, J.; Leaird, D.E.; Srinivasan, K.; Chen, L.; Aksyuk, V.; Weiner, A.M. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Opt. Express 2012, 20, 29284–29295. [Google Scholar] [CrossRef] [Green Version]
- Pfeifle, J.; Brasch, V.; Lauermann, M.; Yu, Y.; Wegner, D.; Herr, T.; Hartinger, K.; Schindler, P.; Li, J.; Hillerkuss, D.; et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photon. 2014, 8, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Coillet, A.; Chembo, Y.K. On the robustness of phase-locking in Kerr optical frequency combs. Opt. Lett. 2014, 39, 1529–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, J.S.; Sigmund, O. Topology optimization for nano- photonics. Laser Photonics Rev. 2011, 5, 308–321. [Google Scholar] [CrossRef]
- Guo, K.; Yang, L.; Shi, X.; Liu, X.; Cao, Y.; Zhang, J.; Wang, X.; Yang, J.; Ou, H.; Zhao, Y. Nonclassical Optical Bistability and Resonance-Locked Regime of Photon-Pair Sources Using Silicon Microring Resonator. Phys. Rev. Appl. 2019, 11, 034007. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Guo, K.; Christensen, J.B.; Castaneda, M.A.U.; Liu, X.; Ou, H.; Karsten, R. Multichannel Photon-Pair Generation with Strong and Uniform Spectral Correlation in a Silicon Microring Resonator. Phys. Rev. Appl. 2019, 12, 034053. [Google Scholar] [CrossRef] [Green Version]
- Lukin, D.M.; Dory, C.; Guidry, M.A.; Yang, K.Y.; Mishra, S.D.; Trivedi, R.; Radulaski, M.; Sun, S.; Vercruysse, D.; Ahn, G.H. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 2020, 14, 330–334. [Google Scholar] [CrossRef]
- Becher, C.; Gao, W.; Kar, S.; Marciniak, C.D.; Monz, T.; Bartholomew, J.G.; Goldner, P.; Loh, H.; Marcellina, E.; Eng, J.G.K. 2023 roadmap for materials for quantum technologies. Mater. Quantum. Technol. 2023, 3, 012501. [Google Scholar] [CrossRef]
- Babin, C.; Stöhr, R.; Morioka, N.; Linkewitz, T.; Steidl, T.; Wörnle, R.; Liu, D.; Hesselmeier, E.; Vorobyov, V.; Denisenko, A. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 2022, 21, 67–73. [Google Scholar] [CrossRef]
- Guidry, M.A.; Lukin, D.M.; Yang, K.Y.; Trivedi, R.; Vučković, J. Quantum optics of soliton microcombs. Nat. Photon. 2022, 16, 52–58. [Google Scholar] [CrossRef]
- Nozaki, R.; Sato, Y.; Shimada, Y.; Suzuki, T.; Yasuno, K.; Ikai, Y.; Ueda, W.; Shimizu, K.; Yukawa, E.; Sanakaet, K. Enhancing the stimulated emission of polarization-entangled photons using passive optical components. Phys. Rev. A 2023, 107, 023707. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirleto, L.; Righini, G.C. An Introduction to Nonlinear Integrated Photonics: Structures and Devices. Micromachines 2023, 14, 614. https://doi.org/10.3390/mi14030614
Sirleto L, Righini GC. An Introduction to Nonlinear Integrated Photonics: Structures and Devices. Micromachines. 2023; 14(3):614. https://doi.org/10.3390/mi14030614
Chicago/Turabian StyleSirleto, Luigi, and Giancarlo C. Righini. 2023. "An Introduction to Nonlinear Integrated Photonics: Structures and Devices" Micromachines 14, no. 3: 614. https://doi.org/10.3390/mi14030614
APA StyleSirleto, L., & Righini, G. C. (2023). An Introduction to Nonlinear Integrated Photonics: Structures and Devices. Micromachines, 14(3), 614. https://doi.org/10.3390/mi14030614