Relationship between Adsorption and Toxicity of Nephrotoxic Drugs in Microphysiological Systems (MPS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantification of Drug Adsorption to Each Material Used in MPS
2.2. Cytotoxicity and Adsorptivity of Each Material Used in MPS
2.3. Fabrication of MPS
2.4. Cell Culture in MPS
2.5. Immunostaining
2.6. Comparison of COP-MPS and PDMS-MPS Cytotoxicity
2.7. Comparison of Nephrotoxic Drug Cytotoxicity in COP-MPS and PDMS-MPS
3. Results
3.1. Quantification of Drug Adsorption to Each Material Used in MPS
3.2. Cytotoxicity and Adsorptivity of Each Material Used in MPS
3.3. Cell Culture in MPS and Immunostaining
3.4. Comparison of COP-MPS and PDMS-MPS Cytotoxicity
3.5. Comparison of Nephrotoxic Drug Cytotoxicity in COP-MPS and PDMS-MPS
4. Discussion
4.1. Quantification of Drug Adsorption to Each Material Used in MPS
4.2. Cytotoxicity and Adsorptivity of Each Material Used in MPS
4.3. Cell Culture in MPS and Immunostaining
4.4. Comparison of COP- and PDMS-MPS Cytotoxicity
4.5. Comparison of Nephrotoxic Drug Cytotoxicity in COP-MPS and PDMS-MPS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhatia, S.N.; Ingber, D.E. Microfluidic organs-on-chips. Nat. Biotechnol. 2014, 32, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Ingber, D.E. Reverse Engineering Human Pathophysiology with Organs-on-Chips. Cell 2016, 164, 1105–1109. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Yoon, J.Y. Organ-on-a-chip for assessing environmental toxicants. Curr. Opin. Biotechnol. 2017, 45, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Marx, U.; Akabane, T.; Andersson, T.B.; Baker, E.; Beilmann, M.; Beken, S.; Schwaab, S.B.; Cirit, M.; David, R.; Dehne, E.M.; et al. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX 2020, 37, 365–394. [Google Scholar]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting Organ-Level Lung Functions on a Chip. Science 2010, 328, 1662–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, H.Y.; Trier, S.; Rahbek, U.L.; Dufva, M.; Kutter, J.P.; Andresen, T.L. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies. PLoS ONE 2018, 13, e0197101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, H.; Ikeda, T.; Nakayama, H.; Sakai, Y.; Fujii, T. An on-chip small intestine–liver model for pharmacokinetic studies. J. Lab. Autom. 2015, 20, 265–273. [Google Scholar] [PubMed]
- Vedula, E.M.; Alonso, J.L.; Arnaout, M.A.; Charest, J.L. A microfluidic renal proximal tubule with active reabsorptive function. PLoS ONE 2017, 12, e0184330. [Google Scholar] [CrossRef] [Green Version]
- Shemesh, J.; Jalilian, I.; Shi, A.; Yeoh, G.H.; Tate, M.L.K.; Warkiani, M.E. Flow-induced stress on adherent cells in microfluidic devices. Lab Chip 2015, 15, 4114–4127. [Google Scholar] [CrossRef]
- Aran, K.; Sasso, A.L.; Kamdar, N.; Zahn, D.J. Irreversible, direct bonding of nanoporous polymermembranes to PDMS or glass microdevices. Lab Chip 2010, 10, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Martinez, M.J.L.; Baraket, A.; Zine, N.; Esteve, J.; Plaza, J.A.; Renault, N.J.; Errachid, A. Polymer micromixers bonded to thermoplastic films combining soft-lithography with plasma and aptes treatment processes. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 59–70. [Google Scholar] [CrossRef]
- Brown, J.A.; Pensabene, V.; Markov, D.A.; Allwardt, V.; Neely, M.D.; Shi, M.; Britt, C.M.; Hoilett, O.S.; Yang, Q.; Brewer, B.M.; et al. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor. Biomicrofluidics 2015, 9, 054124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.A.; Codreanu, S.G.; Shi, M.; Sherrod, S.D.; Markov, D.A.; Neely, M.D.; Britt, C.M.; Hoilett, O.S.; Reiserer, R.S.; Samson, P.C.; et al. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J. Neuroinflammation 2016, 13, 306. [Google Scholar]
- Toepke, M.W.; Beebe, D.J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 2006, 6, 1484–1486. [Google Scholar] [CrossRef] [PubMed]
- Auner, A.W.; Tasneem, K.M.; Markov, D.A.; McCawley, L.J.; Hutson, M.S. Chemical-PDMS Binding Kinetics and Implications for Bioavailability in Microfluidic Devices. Lab Chip 2019, 19, 864–874. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.D.; Douville, N.J.; Takayama, S.; Elsayed, M. Quantitative Analysis of Molecular Absorption into PDMS Microfluidic Channels. Ann. Biomed. Eng. 2012, 40, 1862–1873. [Google Scholar] [CrossRef]
- Van Meer, B.J.; de Vries, H.; Firth, K.S.A.; van Weerd, J.; Tertoolen, L.G.J.; Karperien, H.B.J.; Jonkheijm, P.; Denning, C.; IJzerman, A.P.; Mummery, C.L. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem. Biophys. Res. Commun. 2017, 482, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Markov, D.A.; Lu, J.Q.; Samson, P.C.; Wikswo, J.P.; McCawley, L.J. Thick-tissue bioreactor as a platform for long-term organotypic culture and drug delivery. Lab Chip 2012, 12, 4560–4568. [Google Scholar] [CrossRef] [Green Version]
- Deguchi, S.; Tsuda, M.; Kosugi, K.; Sakamoto, A.; Mimura, N.; Negoro, R.; Sano, E.; Nobe, T.; Maeda, K.; Kusuhara, H.; et al. Usability of polydimethylsiloxane-based microfluidic devices in pharmaceutical research using human hepatocytes. ACS Biomater. Sci. Eng. 2021, 7, 3648–3657. [Google Scholar] [CrossRef]
- Moore, T.A.; Brodersen, P.; Young, E.W.K. Multiple myeloma cell drug responses differ in thermoplastic vs PDMS microfluidic devices. Anal. Chem. 2017, 89, 11391–11398. [Google Scholar] [CrossRef]
- Sano, E.; Deguchi, S.; Matsuoka, N.; Tsuda, M.; Wang, M.; Kosugi, K.; Mori, C.; Yagi, K.; Wada, A.; Yamasaki, S.; et al. Generation of Tetrafluoroethylene–Propylene Elastomer-Based Microfluidic Devices for Drug Toxicity and Metabolism Studies. ACS Omega 2021, 6, 24859–24865. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; DeVoe, D.L. Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluidics 2009, 6, 1–16. [Google Scholar] [CrossRef]
- Nunes, P.S.; Ohlsson, P.D.; Ordeig, O.; Kutter, J.P. Cyclic olefin polymers: Emerging materials for lab-on-a-chip applications. Microfluid. Nanofluidics 2010, 9, 145–161. [Google Scholar] [CrossRef]
- Terai, H.; Funahashi, R.; Hashimoto, T.; Kakuta, M. Heterogeneous bonding between cyclo-olefin polymer (COP) and glass-like substrate by newly developed water vapor-assisted plasma, aqua plasma cleaner. Electr. Eng. Jpn. 2018, 205, 48–56. [Google Scholar] [CrossRef]
- Wen, X.; Takahashi, S.; Hatakeyama, K.; Kamei, K. Evaluation of the Effects of Solvents Used in the Fabrication of Microfluidic Devices on Cell Cultures. Micromachines 2021, 12, 550. [Google Scholar] [CrossRef]
- DRUGBANK Online. Available online: https://go.drugbank.com/ (accessed on 17 August 2022).
Antibody | Maker & Catalogue No. | Dilution Ratio |
---|---|---|
ZO-1 Monoclonal Antibody | ThermoFisher 33-9100 | 1:100 |
Alexa Fluor® 647 OCT-2 Antibody | Abcam ab205482 | 1:100 |
Donkey anti-Mouse IgG (H + L) Highly Cross-Absorbed Secondary Antibody Alexa Fluor® 488 | Thermo Fisher A21202 | 1:400 |
Drug | Molecular Weight | Log P |
---|---|---|
Cisplatin | 300 | −2.19 |
Oxaliplatin | 397 | −0.47 |
Gentamicin | 1390 | −3.1 |
Cyclosporine A | 1200 | 3.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueno, R.; Kuninori, M.; Sumi, T.; Sadeghian, R.B.; Takata, Y.; Iguchi, A.; Tsuda, M.; Yamashita, F.; Ichikawa, K.; Yokokawa, R. Relationship between Adsorption and Toxicity of Nephrotoxic Drugs in Microphysiological Systems (MPS). Micromachines 2023, 14, 761. https://doi.org/10.3390/mi14040761
Ueno R, Kuninori M, Sumi T, Sadeghian RB, Takata Y, Iguchi A, Tsuda M, Yamashita F, Ichikawa K, Yokokawa R. Relationship between Adsorption and Toxicity of Nephrotoxic Drugs in Microphysiological Systems (MPS). Micromachines. 2023; 14(4):761. https://doi.org/10.3390/mi14040761
Chicago/Turabian StyleUeno, Ryohei, Masahiro Kuninori, Takumi Sumi, Ramin Banan Sadeghian, Yuji Takata, Azusa Iguchi, Masahiro Tsuda, Fumiyoshi Yamashita, Kentaro Ichikawa, and Ryuji Yokokawa. 2023. "Relationship between Adsorption and Toxicity of Nephrotoxic Drugs in Microphysiological Systems (MPS)" Micromachines 14, no. 4: 761. https://doi.org/10.3390/mi14040761
APA StyleUeno, R., Kuninori, M., Sumi, T., Sadeghian, R. B., Takata, Y., Iguchi, A., Tsuda, M., Yamashita, F., Ichikawa, K., & Yokokawa, R. (2023). Relationship between Adsorption and Toxicity of Nephrotoxic Drugs in Microphysiological Systems (MPS). Micromachines, 14(4), 761. https://doi.org/10.3390/mi14040761