Research on a Method to Improve the Temperature Performance of an All-Silicon Accelerometer
Abstract
:1. Introduction
2. MEMS Accelerometer Layer Design
3. Principle of MEMS Accelerometer
4. Structural Stress Simulation Analysis of MEMS Accelerometer
5. Design Verification
6. Experimental Test
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ru, X.; Gu, N.; Shang, H.; Zhang, H. MEMS Inertial Sensor Calibration Technology: Current Status and Future Trends. Micromachines 2022, 13, 879. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, N.; Najafi, K. An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process. J. Microelectromech. Syst. 2000, 9, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Marjoux, D.; Ullah, P.; Frantz-Rodriguez, N.; Morgado-Orsini, P.F.; Soursou, M.; Brisson, R.; Lenoir, Y.; Delhaye, F. Silicon MEMS by Safran—Navigation grade accelerometer ready for mass production. In Proceedings of the 2020 DGON Inertial Sensors and Systems (ISS), Braunschweig, Germany, 15–16 September 2020. [Google Scholar]
- Xiao, D.; Xia, D.; Li, Q.; Hou, Z.; Liu, G.; Wang, X.; Chen, Z.; Wu, X. A double differential torsional accelerometer with improved temperature robustness. Sens. Actuators A Phys. 2016, 243, 43–51. [Google Scholar] [CrossRef]
- Xu, W.; Tang, B.; Xie, G.; Yang, J. An All-Silicon Double Differential MEMS Accelerometer with Improved Thermal Stability. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018. [Google Scholar]
- Niu, H.; Sun, G.; Wang, S.; Zhang, F. A design of capacitance MEMS accelerometer with wafer level encapsulated all-silicon comb tooth. J. Chin. Inert. Technol. 2020, 28, 672–676. [Google Scholar]
- Liu, H.; Fang, R.; Miao, M.; Zhang, Y.; Yan, Y.; Tang, X.; Lu, H.; Jin, Y. Design, Fabrication, and Performance Characterization of LTCC-Based Capacitive Accelerometers. Micromachines 2018, 9, 120. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, A.; Akin, T. Self-Packaged Three Axis Capacitive Mems Accelerometer. In Proceedings of the 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 18–22 January 2020; pp. 777–780. [Google Scholar]
- He, Y.; Si, C.; Han, G.; Zhao, Y.; Ning, J.; Yang, F. A Novel Fabrication Method for a Capacitive MEMS Accelerometer Based on Glass–Silicon Composite Wafers. Micromachines 2021, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cao, H.; Guo, T. A Hybrid Algorithm for Noise Suppression of MEMS Accelerometer Based on the Improved VMD and TFPF. Micromachines 2022, 13, 891. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Fang, Z.; Dong, J.; Liu, Y.; Han, F. A Temperature-Insensitive Micromachined Resonant Accelerometer with Thermal Stress Isolation. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018. [Google Scholar]
- Fujiyoshi, M.; Kawamoto, A.; Hashimoto, S.; Omura, Y.; Funabashi, H.; Ohira, Y.; Hata, Y.; Ozaki, T.; Akashi, T.; Nonomura, Y.; et al. Stress Isolation Suspension for Silicon-on-Insulator 3-Axis Accelerometer Designed by Topology Optimization Method. IEEE Sens. J. 2022, 22, 3965–3973. [Google Scholar] [CrossRef]
- Cui, J.; Liu, M.; Yang, H.; Li, D.; Zhao, Q. Temperature Robust Silicon Resonant Accelerometer with Stress Isolation Frame Mounted on Axis-Symmetrical Anchors. In Proceedings of the 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 18–22 January 2020. [Google Scholar]
- Schroder, S.; Niklaus, F.; Nafari, A.; Westby, E.R.; Fischer, A.C.; Stemme, G.; Haasl, S. Stress-minimized packaging of inertial sensors by double-sided bond wire attachment. J. Microelectromech. Syst. 2015, 24, 781–789. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, C.; Meng, F.; Hao, Y. A SOI sandwich differential capacitance accelerometer with low-stress package. In Proceedings of the 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Waikiki Beach, HI, USA, 13–16 April 2014; pp. 341–345. [Google Scholar]
Name | Silicon | Silicon Dioxide | Au | Unit |
---|---|---|---|---|
Coefficient of thermal expansion (CTE) | 2.60 × 10−6 | 0.5 × 10−6 | 14.2 × 10−6 | 1/K |
Constant pressure heat capacity | 700 | 730 | 129 | J/(kg·K) |
Density | 2329 | 2200 | 19,300 | kg/m3 |
Thermal conductivity | 130 | 1.4 | 317 | W/(m·K) |
Young’s modulus | 1.69 × 1011 | 7.00 × 1010 | 7.00 × 1010 | Pa |
Poisson’s ratio | 0.28 | 0.17 | 0.44 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Liu, Y.; Ma, X.; Wang, X.; Zheng, X.; Jin, Z. Research on a Method to Improve the Temperature Performance of an All-Silicon Accelerometer. Micromachines 2023, 14, 869. https://doi.org/10.3390/mi14040869
Liu G, Liu Y, Ma X, Wang X, Zheng X, Jin Z. Research on a Method to Improve the Temperature Performance of an All-Silicon Accelerometer. Micromachines. 2023; 14(4):869. https://doi.org/10.3390/mi14040869
Chicago/Turabian StyleLiu, Guowen, Yu Liu, Xiao Ma, Xuefeng Wang, Xudong Zheng, and Zhonghe Jin. 2023. "Research on a Method to Improve the Temperature Performance of an All-Silicon Accelerometer" Micromachines 14, no. 4: 869. https://doi.org/10.3390/mi14040869
APA StyleLiu, G., Liu, Y., Ma, X., Wang, X., Zheng, X., & Jin, Z. (2023). Research on a Method to Improve the Temperature Performance of an All-Silicon Accelerometer. Micromachines, 14(4), 869. https://doi.org/10.3390/mi14040869