Hierarchical Design of CuO/Nickel–Cobalt–Sulfide Electrode by a Facile Two-Step Potentiostatic Deposition
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Potentiostatic Deposition of CuO/NCS on CF
2.3. Characterization
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Melkiyur, I.; Rathinam, Y.; Kumar, P.S.; Sankaiya, A.; Pitchaiya, S.; Ganesan, R.; Velauthapillai, D. A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: Origin, fundamentals, present perspectives and future aspects. Renew. Sustain. Energy Rev. 2023, 173, 113106. [Google Scholar] [CrossRef]
- Zhao, J.P.; Wang, Y.H.; Qian, Y.D.; Jin, H.L.; Tang, X.Y.; Huang, Z.M.; Lou, J.Y.; Zhang, Q.C.; Lei, Y.; Wang, S. Hierarchical Design of Cross-Linked NiCo2S4 Nanowires Bridged NiCo-Hydrocarbonate Polyhedrons for High-Performance Asymmetric Supercapacitor. Adv. Funct. Mater. 2022, 33, 2210238. [Google Scholar] [CrossRef]
- Huang, J.; Wei, J.C.; Xiao, Y.B.; Xu, Y.Z.; Xiao, Y.J.; Wang, Y.; Tan, L.C.; Yuan, K.; Chen, Y.W. When Al-Doped Cobalt-Sulfide Nanosheets Meet Nickel Nanotube Arrays: A Highly Efficient and Stable Cathode for Asymmetric Supercapacitors. ACS Nano 2018, 3, 3030–3041. [Google Scholar] [CrossRef]
- Hu, X.M.; Liu, S.C.; Chen, Y.K.; Jiang, J.B.; Cong, H.S.; Tang, J.B.; Sun, Y.X.; Han, S.; Lin, H.L. Rational design of flower-like cobalt-manganese-sulfide nanosheets for high performance supercapacitor electrode materials. N. J. Chem. 2020, 44, 11786–11795. [Google Scholar] [CrossRef]
- Meng, Y.; Sun, P.X.; He, W.D.; Teng, B.; Xu, X.J. Construction of hierarchical Co-Ni-S nanosheets as free-standing electrode for superior-performance asymmetric supercapacitors. Appl. Surf. Sci. 2019, 470, 792–799. [Google Scholar] [CrossRef]
- Yang, F.; Guo, H.; Zhang, J.Y.; Wu, N.; Yang, M.; Chen, Y.; Zhang, T.T.; Sun, L.; Yang, W. Core-shell structured WS2@Ni-Co-S composite and activated carbon derived from rose flowers as high-efficiency hybrid supercapacitor electrodes. J. Energy Storage 2022, 54, 105234. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, W.F.; Guo, Y.J.; Wang, Y. Self-supported Co-Ni-S@CoNi-LDH electrode with a nanosheet-assembled core-shell structure for a high-performance supercapacitor. J. Alloys Compd. 2022, 908, 164635. [Google Scholar] [CrossRef]
- Yu, J.H.; Pang, X.C.; Yin, Q.C.; Chen, D.; Dong, H.Z.; Zhang, Q.; Sui, J.; Lina Sui, L.; Dong, L.F. Metal-organic frameworks supported Ni-Co-S nanosheet arrays for advanced hybrid supercapacitors. Int. J. Hydrogen Energy 2022, 47, 39265–39275. [Google Scholar] [CrossRef]
- Rehman, J.; Eid, K.; Ali, R.; Fan, X.F.; Murtaza, G.; Faizan, M.; Laref, A.; Zheng, W.T.; Varma, R.S. Engineering of Transition Metal Sulfide Nanostructures as Efficient Electrodes for High-Performance Supercapacitors. ACS Appl. Energy Mater. 2022, 5, 6481–6498. [Google Scholar] [CrossRef]
- Wen, Y.X.; Liu, Y.P.; Wang, T.; Wang, Z.L.; Zhang, Y.Z.; Wu, X.G.; Chen, X.T.; Peng, S.L.; He, D.Y. High-Mass-Loading Ni-Co-S Electrodes with Unfading Electrochemical Performance for Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 6531–6541. [Google Scholar] [CrossRef]
- Wang, J.S.; Hu, L.B.; Zhou, X.Y.; Zhang, S.; Qiao, Q.S.; Xu, L.; Tang, S.C. Three-Dimensional Porous Network Electrodes with Cu(OH)2 Nanosheet/Ni3S2 Nanowire 2D/1D Heterostructures for Remarkably Cycle-Stable Supercapacitors. ACS Omega 2021, 6, 34276–34285. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Dai, X.Q.; Jin, J.; Tie, N.; Dai, Y.T. Hierarchical core-shell hollow CoMoS4@Ni-Co-S nanotubes hybrid arrays as advanced electrode material for supercapacitors. Electrochim. Acta 2020, 331, 135459. [Google Scholar] [CrossRef]
- Zhang, M.; Zang, R.X.; Zhang, M.M.; Liu, R.; Zhu, X.S.; Li, X.B.; Cui, H.Z.; Zhu, H.L. Promoting the cyclic and rate performance of nickel hydroxide with ZnO via electrodeposition for supercapacitor. J. Alloys Compd. 2022, 911, 164865. [Google Scholar] [CrossRef]
- Satpathy, B.K.; Patnaik, S.; Pradhan, D. Room-Temperature Growth of Co(OH)2 Nanosheets on Nanobelt-like Cu(OH)2 Arrays for a Binder-Free High-Performance All-Solid-State Supercapacitor. ACS Appl. Energy Mater. 2022, 1, 77–87. [Google Scholar] [CrossRef]
- Anantharaj, S.; Nagamatsu, T.; Yamaoka, S.; Li, M.C.; Noda, S. Efficient Methanol Electrooxidation Catalyzed by Potentiostatically Grown Cu-O/OH(Ni) Nanowires: Role of Inherent Ni Impurity. ACS Appl. Energy Mater. 2022, 5, 419–429. [Google Scholar] [CrossRef]
- Tauquir, S.M.; Karnan, M.; Subramani, K.; Sathish, M. One-step superficial electrodeposition of nickel-cobalt-sulfide for high-energy hybrid asymmetric supercapacitor. Mater. Lett. 2022, 323, 132563. [Google Scholar] [CrossRef]
- Chen, C.; Yan, D.; Luo, X.; Gao, W.J.; Huang, G.J.; Han, Z.W.; Zeng, Y.; Zhu, Z.H. Construction of Core-Shell NiMoO4@Ni-Co-S Nanorods as Advanced Electrodes for High-Performance Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 4662–4671. [Google Scholar] [CrossRef]
- Zhang, P.; He, H.W.; Li, Q.X. Ni-Co-S nanosheets supported by CuCo2O4 nanowires for ultra-high capacitance hybrid supercapacitor electrode. Int. J. Hydrogen Energ. 2020, 45, 4784–4792. [Google Scholar] [CrossRef]
- Liu, G.L.; He, X.; He, D.; Cui, B.Y.; Zhu, L.; Suo, H. Construction of CuO@Ni-Fe layered double hydroxide hierarchical core-shell nanorods arrays on copper foam for high-performance Supercapacitors. J. Mater. Sci. Mater. Electron. 2019, 30, 2080–2088. [Google Scholar] [CrossRef]
- Pu, X.L.; Ren, X.H.; Yin, H.F.; Tang, Y.; Yuan, H.D. One-step electrodeposition strategy for growing nickel cobalt hydroxysulfide nanosheets for supercapacitor application. J. Alloys Compd. 2021, 865, 158736. [Google Scholar] [CrossRef]
- Fu, S.Q.; Yang, X.C.; Zhao, P.D.; Yao, X.; Jiao, Z.; Cheng, L.L. Regulable Electron Transfer on ZnS/CoS2/CC Prepared by an MOF-on-MOF Strategy for Robust LIB Performance. ACS Appl. Energy Mater. 2022, 5, 5159–5169. [Google Scholar] [CrossRef]
- He, D.; Wan, J.N.; Liu, G.L.; Suo, H.; Zhao, C. Design and construction of hierarchical α-Co(OH)2-coated ultra-thin ZnO flower nanostructures on nickel foam for high performance supercapacitors. J. Alloys Compd. 2020, 838, 155556–155564. [Google Scholar] [CrossRef]
- Xu, L.N.; Zhang, H.; Li, J.; Guo, X.; Sun, H.B.; Li, Y.A.; Wu, T. Designing Core-Shell Ni(OH)2@CuO Nanowire Arrays on 3D Copper Foams for High-Performance Asymmetric Supercapacitors. ChemElectroChem 2019, 6, 5462–5468. [Google Scholar] [CrossRef]
- Miao, Y.D.; Zhang, X.P.; Zhan, J.; Sui, Y.W.; Qi, J.Q.; Wei, F.X.; Meng, Q.K.; He, Y.Z.; Ren, Y.J.; Zhan, Z.Z.; et al. Hierarchical NiS@CoS with Controllable Core-Shell Structure by Two-Step Strategy for Supercapacitor Electrodes. Adv. Mater. Interfaces 2019, 7, 1901618. [Google Scholar] [CrossRef]
- Lin, Y.F.; Chen, X.Y.; Chang, P.; Liu, Z.L.; Ren, G.H.; Tao, J.G. Hierarchical design of Ni3S2@Co9S8 nanotubes for supercapacitors with long cycle-life and high energy density. J. Alloys Compd. 2022, 900, 163503. [Google Scholar] [CrossRef]
- Sun, H.B.; Xu, L.N.; Li, J.; Li, Y.A.; Wu, T.; Yu, F.Y.; Guo, X.; Zhang, H. Hieratical CuO clusters in-situ grown on copper films coated three-dimensional nickel foams for high-performance supercapacitors. Ceram. Int. 2020, 46, 17461–17468. [Google Scholar] [CrossRef]
- Kumar, A.; Thomas, A.; Garg, M.; Perumal, G.; Grewal, H.S.; Arora, H.S. High performance CuO@brass supercapacitor electrodes through surface activation. J. Mater. Chem. A 2021, 9, 9327–9336. [Google Scholar] [CrossRef]
- Wu, T.; Xu, L.N.; Sun, H.B.; Bao, Y.Q.; Yu, H.Y.; Guo, X.; Hu, Q.Q.; Li, J. Hierarchical shell/core electrodes with CuO nanowires based on carbon cloths for high performance asymmetric supercapacitors. Ceram. Int. 2021, 47, 33758–33765. [Google Scholar] [CrossRef]
- Shen, M.; Chen, L.; Ren, S.B.; Chen, Y.X.; Li, W.; Zheng, R.; Lin, Y.Q.; Deman Han, D.M. Construction of CuO/PPy heterojunction nanowire arrays on copper foam as integrated binder-free electrode material for high-performance supercapacitor. J. Electroanal. Chem. 2021, 891, 115272. [Google Scholar] [CrossRef]
- Wang, R.Z.; Luo, Y.Z.; Chen, Z.; Zhang, M.; Wang, T.H. The effect of loading density of nickel-cobalt sulfide arrays on their cyclic stability and rate performance for supercapacitors. Sci. China Mater. 2016, 59, 629–638. [Google Scholar] [CrossRef]
- Prabakaran, P.; Prabhu, S.; Selvaraj, M.; Navaneethan, M.; Ramu, P.; Ramesh, R. Design and preparation of NiCoS nanostructures on Ni foam for high-performance asymmetric supercapacitor application. J. Mater. Sci. Mater. Electron. 2022, 33, 9256–9268. [Google Scholar] [CrossRef]
- Zhou, A.; Chi, R.T.; Liu, R.; Shi, Y.J.; Zhang, Z.X.; Che, H.W.; Wang, G.S.; Mu, J.B.; Wang, Y.M.; Zhang, X.R. Se-doped nickel-cobalt sulfide nanotube arrays with 3D networks for high-performance hybrid supercapacitor. Ceram. Int. 2022, 48, 30536–30545. [Google Scholar] [CrossRef]
- Wang, X.W.; Sun, Y.C.; Zhang, W.C.; Wu, X. Flexible CuCo2O4@Ni-Co-S hybrids as electrode materials for high-performance energy storage devices. Chin. Chem. Lett. 2023, 34, 107593. [Google Scholar] [CrossRef]
- Ma, Z.L.; Zheng, R.; Liu, Y.; Ying, Y.L.; Shi, W.D. Carbon nanotubes interpenetrating MOFs-derived Co-Ni-S composite spheres with interconnected architecture for high performance hybrid supercapacitor. J. Colloid Interf. Sci. 2021, 602, 627–635. [Google Scholar] [CrossRef]
- Dong, L.H.; Zhao, W.; Liu, T.Y.; Sun, L.L.; Li, X.T. In situ growth of Ni-Co-S nanosheet arrays on rGO decorated Ni foam toward high-performance supercapacitors. J. Electroanal. Chem. 2022, 921, 116658. [Google Scholar] [CrossRef]
- Owusu, K.A.; Qu, L.B.; Li, J.T.; Wang, Z.Y.; Zhao, K.N.; Yang, C.; Hercule, K.M.; Lin, C.; Shi, C.W.; Wei, Q.L.; et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 2017, 8, 14264. [Google Scholar] [CrossRef]
- Chen, Q.; Jin, J.L.; Song, M.D.; Zhang, X.Y.; Li, H.; Zhang, J.L.; Hou, G.Y.; Tang, Y.P.; Mai, L.Q.; Zhou, L. High-Energy Aqueous Ammonium-Ion Hybrid Supercapacitors. Adv. Mater. 2022, 34, 2107992. [Google Scholar] [CrossRef]
- Chen, Q.; Li, H.; Lou, X.; Zhang, J.L.; Hou, G.Y.; Lu, J.; Tang, Y.P. Surface Oxygen Coordination of Hydrogen Bond Chemistry for Aqueous Ammonium Ion Hybrid Supercapacitor. Adv. Funct. Mater. 2023, 2214920. [Google Scholar] [CrossRef]
Electrode | Substrate | Electrolyte | Current Density (mA cm−2) | Cs (F cm−2) | Ref. |
---|---|---|---|---|---|
CuO | Ni foam | 6 M KOH | 3 | 1.61 | [32] |
CuO | brass | 1 M Na2SO4 | 5 | 1.68 | [33] |
Ni(OH)2@CuO | Carbon cloth | 6 M KOH | 1 | 2.28 | [34] |
CuO/ppy | Cu foam | 3 M KOH | 2 | 1.08 | [35] |
Ni-Co-S | Ni foam | 3 M NaOH | 10 | 4.87 | [36] |
Ni-Co-S | Ni foam | 1 M KOH | 1 | 3.31 | [37] |
Co-Ni-S | Ni foam | 3 M KOH | 8 | 1.12 | [5] |
Se-Ni-Co-S | Ni foam | 3 M KOH | 1 | 2.00 | [38] |
CuO/Ni-Co-S | Cu foam | 2 M NaOH | 20 | 4.26 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, S.; Geng, P.; Chi, Y.; Wang, H.; Chu, X.; Zhao, Y.; Wu, B.; Shang, W.; Wang, C.; Yang, J.; et al. Hierarchical Design of CuO/Nickel–Cobalt–Sulfide Electrode by a Facile Two-Step Potentiostatic Deposition. Micromachines 2023, 14, 888. https://doi.org/10.3390/mi14040888
Lv S, Geng P, Chi Y, Wang H, Chu X, Zhao Y, Wu B, Shang W, Wang C, Yang J, et al. Hierarchical Design of CuO/Nickel–Cobalt–Sulfide Electrode by a Facile Two-Step Potentiostatic Deposition. Micromachines. 2023; 14(4):888. https://doi.org/10.3390/mi14040888
Chicago/Turabian StyleLv, Sa, Peiyu Geng, Yaodan Chi, Huan Wang, Xuefeng Chu, Yang Zhao, Boqi Wu, Wenshi Shang, Chao Wang, Jia Yang, and et al. 2023. "Hierarchical Design of CuO/Nickel–Cobalt–Sulfide Electrode by a Facile Two-Step Potentiostatic Deposition" Micromachines 14, no. 4: 888. https://doi.org/10.3390/mi14040888
APA StyleLv, S., Geng, P., Chi, Y., Wang, H., Chu, X., Zhao, Y., Wu, B., Shang, W., Wang, C., Yang, J., Cheng, Z., & Yang, X. (2023). Hierarchical Design of CuO/Nickel–Cobalt–Sulfide Electrode by a Facile Two-Step Potentiostatic Deposition. Micromachines, 14(4), 888. https://doi.org/10.3390/mi14040888