Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications
Abstract
:1. Introduction
2. Mechanisms of Nanozymes for Antioxidant Effects
2.1. Catalase-Like Activity
2.2. Superoxide-Dismutase-Like Activity
2.3. Glutathione-Peroxidase-Like Activity
3. Manipulation of Nanozyme Activities for Antioxidant Effects
3.1. Size
3.2. Morphology
3.3. Composition
3.4. Surface Modification
3.5. Modification with Metal–Organic Framework
4. Applications
4.1. Applications in Medicine and Healthcare
4.2. Applications in Diagnostics and Analytics
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Auten, R.L.; Davis, J.M. Oxygen Toxicity and Reactive Oxygen Species: The Devil Is in the Details. Pediatr. Res. 2009, 66, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Covarrubias, L.; Hernández-García, D.; Schnabel, D.; Salas-Vidal, E.; Castro-Obregón, S. Function of Reactive Oxygen Species during Animal Development: Passive or Active? Dev. Biol. 2008, 320, 1–11. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.-C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lian, G. ROS and Diseases: Role in Metabolism and Energy Supply. Mol. Cell. Biochem. 2020, 467, 1–12. [Google Scholar] [CrossRef]
- Liang, M.; Yan, X. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef]
- Ashrafi, A.M.; Bytesnikova, Z.; Barek, J.; Richtera, L.; Adam, V. A Critical Comparison of Natural Enzymes and Nanozymes in Biosensing and Bioassays. Biosens. Bioelectron. 2021, 192, 113494. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, X.; Fan, K. Nanozymes Inspired by Natural Enzymes. Acc. Mater. Res. 2021, 2, 534–547. [Google Scholar] [CrossRef]
- Li, A.; Long, L.; Liu, F.; Liu, J.; Wu, X.; Ji, Y. Antigen-Labeled Mesoporous Silica-Coated Au-Core Pt-Shell Nanostructure: A Novel Nanoprobe for Highly Efficient Virus Diagnosis. J. Biol. Eng. 2019, 13, 87. [Google Scholar] [CrossRef]
- Liu, J.; Niu, X. Rational Design of Nanozymes Enables Advanced Biochemical Sensing. Chemosensors 2022, 10, 386. [Google Scholar] [CrossRef]
- Karpova, E.V.; Shcherbacheva, E.V.; Komkova, M.A.; Eliseev, A.A.; Karyakin, A.A. Core–Shell Nanozymes “Artificial Peroxidase”: Stability with Superior Catalytic Properties. J. Phys. Chem. Lett. 2021, 12, 5547–5551. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Ding, C.; Chen, L.; Yang, B.; Li, M.; Wang, X.; Su, F.; Liu, C.; Huang, Y. Multienzyme-Mimicking Au@Cu2O with Complete Antioxidant Capacity for Reactive Oxygen Species Scavenging. ACS Appl. Mater. Interfaces 2023, 15, 378–390. [Google Scholar] [CrossRef]
- Feng, N.; Liu, Y.; Dai, X.; Wang, Y.; Guo, Q.; Li, Q. Advanced Applications of Cerium Oxide Based Nanozymes in Cancer. RSC Adv. 2022, 12, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Baldim, V.; Bedioui, F.; Mignet, N.; Margaill, I.; Berret, J.-F. The Enzyme-like Catalytic Activity of Cerium Oxide Nanoparticles and Its Dependency on Ce3+ Surface Area Concentration. Nanoscale 2018, 10, 6971–6980. [Google Scholar] [CrossRef]
- Liu, X.; Kokare, C. Microbial Enzymes of Use in Industry. In Biotechnology of Microbial Enzymes; Elsevier: Amsterdam, The Netherlands, 2017; pp. 267–298. ISBN 978-0-12-803725-6. [Google Scholar]
- Haider, M.S.; Jaskani, M.J.; Fang, J. Overproduction of ROS: Underlying Molecular Mechanism of Scavenging and Redox Signaling. In Biocontrol Agents and Secondary Metabolites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 347–382. ISBN 978-0-12-822919-4. [Google Scholar]
- Sharma, I.; Ahmad, P. Catalase. In Oxidative Damage to Plants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 131–148. ISBN 978-0-12-799963-0. [Google Scholar]
- Zenin, V.; Ivanova, J.; Pugovkina, N.; Shatrova, A.; Aksenov, N.; Tyuryaeva, I.; Kirpichnikova, K.; Kuneev, I.; Zhuravlev, A.; Osyaeva, E.; et al. Resistance to H2O2-Induced Oxidative Stress in Human Cells of Different Phenotypes. Redox Biol. 2022, 50, 102245. [Google Scholar] [CrossRef] [PubMed]
- Wijeratne, S.S.K.; Cuppett, S.L.; Schlegel, V. Hydrogen Peroxide Induced Oxidative Stress Damage and Antioxidant Enzyme Response in Caco-2 Human Colon Cells. J. Agric. Food Chem. 2005, 53, 8768–8774. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Prieto, M.; Biarnés, X.; Vidossich, P.; Rovira, C. The Molecular Mechanism of the Catalase Reaction. J. Am. Chem. Soc. 2009, 131, 11751–11761. [Google Scholar] [CrossRef]
- Galasso, M.; Gambino, S.; Romanelli, M.G.; Donadelli, M.; Scupoli, M.T. Browsing the Oldest Antioxidant Enzyme: Catalase and Its Multiple Regulation in Cancer. Free Radic. Biol. Med. 2021, 172, 264–272. [Google Scholar] [CrossRef]
- Bhagat, S.; Srikanth Vallabani, N.V.; Shutthanandan, V.; Bowden, M.; Karakoti, A.S.; Singh, S. Gold Core/Ceria Shell-Based Redox Active Nanozyme Mimicking the Biological Multienzyme Complex Phenomenon. J. Colloid Interface Sci. 2018, 513, 831–842. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, J.; Wu, Y.; Cao, P.; Song, L.; Ma, M.; Gu, N.; Zhang, Y. Shape-Dependent Enzyme-like Activity of Co3O4 Nanoparticles and Their Conjugation with His-Tagged EGFR Single-Domain Antibody. Colloids Surf. B Biointerfaces 2017, 154, 55–62. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Q.; Cao, Y.; Hao, H.; Zhou, J.; Hao, J. Metallosurfactant Ionogels in Imidazolium and Protic Ionic Liquids as Precursors to Synthesize Nanoceria as Catalase Mimetics for the Catalytic Decomposition of H2O2. Chem. Eur. J. 2016, 22, 17857–17865. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Fan, K.; Yan, X. Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics 2017, 7, 3207–3227. [Google Scholar] [CrossRef]
- Nicolini, V.; Gambuzzi, E.; Malavasi, G.; Menabue, L.; Menziani, M.C.; Lusvardi, G.; Pedone, A.; Benedetti, F.; Luches, P.; D’Addato, S.; et al. Evidence of Catalase Mimetic Activity in Ce3+/Ce4+ Doped Bioactive Glasses. J. Phys. Chem. B 2015, 119, 4009–4019. [Google Scholar] [CrossRef]
- Celardo, I.; Pedersen, J.Z.; Traversa, E.; Ghibelli, L. Pharmacological Potential of Cerium Oxide Nanoparticles. Nanoscale 2011, 3, 1411. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef]
- Zeng, L.; Cheng, H.; Dai, Y.; Su, Z.; Wang, C.; Lei, L.; Lin, D.; Li, X.; Chen, H.; Fan, K.; et al. In Vivo Regenerable Cerium Oxide Nanozyme-Loaded PH/H2O2-Responsive Nanovesicle for Tumor-Targeted Photothermal and Photodynamic Therapies. ACS Appl. Mater. Interfaces 2021, 13, 233–244. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Fan, J.; Yin, J.-J.; Ning, B.; Wu, X.; Hu, Y.; Ferrari, M.; Anderson, G.J.; Wei, J.; Zhao, Y.; Nie, G. Direct Evidence for Catalase and Peroxidase Activities of Ferritin–Platinum Nanoparticles. Biomaterials 2011, 32, 1611–1618. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, H.; Hou, Y.; Wang, X.; Xue, C.; Li, W.; Cai, K.; Zhao, Y.; Luo, Z. State-of-the-Art Iron-Based Nanozymes for Biocatalytic Tumor Therapy. Nanoscale Horiz. 2020, 5, 202–217. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, L.; Liang, Q.; Xi, J.; Zhao, H.; Jin, Y.; Gao, X.; Yan, X.; Gao, L.; Fan, K. Unveiling the Active Sites on Ferrihydrite with Apparent Catalase-like Activity for Potentiating Radiotherapy. Nano Today 2021, 41, 101317. [Google Scholar] [CrossRef]
- Fujii, J.; Homma, T.; Osaki, T. Superoxide Radicals in the Execution of Cell Death. Antioxidants 2022, 11, 501. [Google Scholar] [CrossRef] [PubMed]
- Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016, 116, 3029–3085. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T. Extracellular Superoxide Dismutase and Cardiovascular Disease. Cardiovasc. Res. 2002, 55, 239–249. [Google Scholar] [CrossRef]
- Liu, M.; Sun, X.; Chen, B.; Dai, R.; Xi, Z.; Xu, H. Insights into Manganese Superoxide Dismutase and Human Diseases. Int. J. Mol. Sci. 2022, 23, 15893. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Ushio-Fukai, M. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Abreu, I.A.; Cabelli, D.E.; Maroney, M.J.; Miller, A.-F.; Teixeira, M.; Valentine, J.S. Superoxide Dismutases and Superoxide Reductases. Chem. Rev. 2014, 114, 3854–3918. [Google Scholar] [CrossRef] [PubMed]
- Weydert, C.J.; Cullen, J.J. Measurement of Superoxide Dismutase, Catalase and Glutathione Peroxidase in Cultured Cells and Tissue. Nat. Protoc. 2010, 5, 51–66. [Google Scholar] [CrossRef]
- Krusic, P.J.; Wasserman, E.; Keizer, P.N.; Morton, J.R.; Preston, K.F. Radical Reactions of C60. Science 1991, 254, 1183–1185. [Google Scholar] [CrossRef]
- Heckert, E.G.; Karakoti, A.S.; Seal, S.; Self, W.T. The Role of Cerium Redox State in the SOD Mimetic Activity of Nanoceria. Biomaterials 2008, 29, 2705–2709. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, R.; Yan, X.; Fan, K. Superoxide Dismutase Nanozymes: An Emerging Star for Anti-Oxidation. J. Mater. Chem. B 2021, 9, 6939–6957. [Google Scholar] [CrossRef]
- Damle, M.A.; Jakhade, A.P.; Chikate, R.C. Modulating Pro- and Antioxidant Activities of Nanoengineered Cerium Dioxide Nanoparticles against Escherichia Coli. ACS Omega 2019, 4, 3761–3771. [Google Scholar] [CrossRef]
- Korsvik, C.; Patil, S.; Seal, S.; Self, W.T. Superoxide Dismutase Mimetic Properties Exhibited by Vacancy Engineered Ceria Nanoparticles. Chem. Commun. 2007, 1056–1058. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, A.M.; Liu, A.C.Y.; Chaffee, A.L. Oxygen Uptake of Tb–CeO2: Analysis of Ce3+ and Oxygen Vacancies. J. Phys. Chem. C 2016, 120, 14382–14389. [Google Scholar] [CrossRef]
- Dutta, P.; Pal, S.; Seehra, M.S.; Shi, Y.; Eyring, E.M.; Ernst, R.D. Concentration of Ce 3+ and Oxygen Vacancies in Cerium Oxide Nanoparticles. Chem. Mater. 2006, 18, 5144–5146. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, R.; Zhao, H.; Qi, H.; Li, J.; Li, J.; Zhou, X.; Wang, A.; Fan, K.; Yan, X.; et al. Bioinspired Copper Single-atom Nanozyme as a Superoxide Dismutase-like Antioxidant for Sepsis Treatment. Exploration 2022, 2, 20210267. [Google Scholar] [CrossRef]
- Sharifi, M.; Faryabi, K.; Talaei, A.J.; Shekha, M.S.; Ale-Ebrahim, M.; Salihi, A.; Nanakali, N.M.Q.; Aziz, F.M.; Rasti, B.; Hasan, A.; et al. Antioxidant Properties of Gold Nanozyme: A Review. J. Mol. Liq. 2020, 297, 112004. [Google Scholar] [CrossRef]
- Guo, S.; Guo, L. Unraveling the Multi-Enzyme-Like Activities of Iron Oxide Nanozyme via a First-Principles Microkinetic Study. J. Phys. Chem. C 2019, 123, 30318–30334. [Google Scholar] [CrossRef]
- Singh, N.; Geethika, M.; Eswarappa, S.M.; Mugesh, G. Manganese-Based Nanozymes: Multienzyme Redox Activity and Effect on the Nitric Oxide Produced by Endothelial Nitric Oxide Synthase. Chem. Eur. J. 2018, 24, 8393–8403. [Google Scholar] [CrossRef]
- Liu, Y.; Qing, Y.; Jing, L.; Zou, W.; Guo, R. Platinum–Copper Bimetallic Colloid Nanoparticle Cluster Nanozymes with Multiple Enzyme-like Activities for Scavenging Reactive Oxygen Species. Langmuir 2021, 37, 7364–7372. [Google Scholar] [CrossRef]
- Dong, J.; Song, L.; Yin, J.-J.; He, W.; Wu, Y.; Gu, N.; Zhang, Y. Co3O4 Nanoparticles with Multi-Enzyme Activities and Their Application in Immunohistochemical Assay. ACS Appl. Mater. Interfaces 2014, 6, 1959–1970. [Google Scholar] [CrossRef]
- Dashtestani, F.; Ghourchian, H.; Najafi, A. Silver-Gold-Apoferritin Nanozyme for Suppressing Oxidative Stress during Cryopreservation. Mater. Sci. Eng. C 2019, 94, 831–840. [Google Scholar] [CrossRef]
- Bielski, B.H.J.; Cabelli, D.E.; Arudi, R.L.; Ross, A.B. Reactivity of HO2/O−2 Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100. [Google Scholar] [CrossRef]
- Shen, X.; Liu, W.; Gao, X.; Lu, Z.; Wu, X.; Gao, X. Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen. J. Am. Chem. Soc. 2015, 137, 15882–15891. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, N.; Zhang, J.; Zhu, J.; Guo, Y.; Xu, L. A Novel Nanozyme Based on Selenopeptide-Modified Gold Nanoparticles with a Tunable Glutathione Peroxidase Activity. RSC Adv. 2020, 10, 8685–8691. [Google Scholar] [CrossRef] [PubMed]
- Kendall, A.; Woolcock, A.; Brooks, A.; Moore, G.E. Glutathione Peroxidase Activity, Plasma Total Antioxidant Capacity, and Urinary F2- Isoprostanes as Markers of Oxidative Stress in Anemic Dogs. J. Vet. Intern. Med. 2017, 31, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Leonel, C.; Gelaleti, G.B.; Jardim, B.V.; Moschetta, M.G.; Regiani, V.R.; Oliveira, J.G.; Zuccari, D.A. Expression of Glutathione, Glutathione Peroxidase and Glutathione S-Transferase Pi in Canine Mammary Tumors. BMC Vet. Res. 2014, 10, 49. [Google Scholar] [CrossRef]
- Huchzermeyer, B.; Menghani, E.; Khardia, P.; Shilu, A. Metabolic Pathway of Natural Antioxidants, Antioxidant Enzymes and ROS Providence. Antioxidants 2022, 11, 761. [Google Scholar] [CrossRef] [PubMed]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef]
- Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione Peroxidase: A Selenoenzyme. FEBS Lett. 1973, 32, 132–134. [Google Scholar] [CrossRef]
- Kraus, R.J.; Foster, S.J.; Ganther, H.E. Identification of Selenocysteine in Glutathione Peroxidase by Mass Spectroscopy. Biochemistry 1983, 22, 5853–5858. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yu, Y.; Cheng, Y.; Cheng, C.; Zhang, Y.; Jiang, B.; Zhao, X.; Miao, L.; Wei, H. Ligand-Dependent Activity Engineering of Glutathione Peroxidase-Mimicking MIL-47(V) Metal–Organic Framework Nanozyme for Therapy. Angew. Chem. Int. Ed. 2021, 60, 1227–1234. [Google Scholar] [CrossRef]
- Ghosh, S.; Roy, P.; Karmodak, N.; Jemmis, E.D.; Mugesh, G. Nanoisozymes: Crystal-Facet-Dependent Enzyme-Mimetic Activity of V 2 O 5 Nanomaterials. Angew. Chem. Int. Ed. 2018, 57, 4510–4515. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Sun, S.; Liu, L.; Mu, X.; Liu, S.; Jiao, M.; Chen, X.; Chen, K.; Ma, H.; et al. Single-Atom Nanozymes Catalytically Surpassing Naturally Occurring Enzymes as Sustained Stitching for Brain Trauma. Nat. Commun. 2022, 13, 4744. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Luo, Q.; Liu, J.; Miao, L.; Zhang, C.; Gao, Y.; Zhang, X.; Xu, J.; Dong, Z.; Liu, J. Construction of GPx Active Centers on Natural Protein Nanodisk/Nanotube: A New Way to Develop Artificial Nanoenzyme. ACS Nano 2012, 6, 8692–8701. [Google Scholar] [CrossRef]
- Vernekar, A.A.; Sinha, D.; Srivastava, S.; Paramasivam, P.U.; D’Silva, P.; Mugesh, G. An Antioxidant Nanozyme That Uncovers the Cytoprotective Potential of Vanadia Nanowires. Nat. Commun. 2014, 5, 5301. [Google Scholar] [CrossRef]
- Singh, N.; Savanur, M.A.; Srivastava, S.; D’Silva, P.; Mugesh, G. A Manganese Oxide Nanozyme Prevents the Oxidative Damage of Biomolecules without Affecting the Endogenous Antioxidant System. Nanoscale 2019, 11, 3855–3863. [Google Scholar] [CrossRef]
- Hao, C.; Qu, A.; Xu, L.; Sun, M.; Zhang, H.; Xu, C.; Kuang, H. Chiral Molecule-Mediated Porous CuxO Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson’s Disease. J. Am. Chem. Soc. 2019, 141, 1091–1099. [Google Scholar] [CrossRef]
- Liu, T.; Xiao, B.; Xiang, F.; Tan, J.; Chen, Z.; Zhang, X.; Wu, C.; Mao, Z.; Luo, G.; Chen, X.; et al. Ultrasmall Copper-Based Nanoparticles for Reactive Oxygen Species Scavenging and Alleviation of Inflammation Related Diseases. Nat. Commun. 2020, 11, 2788. [Google Scholar] [CrossRef]
- Adhikari, A.; Mondal, S.; Das, M.; Biswas, P.; Pal, U.; Darbar, S.; Bhattacharya, S.S.; Pal, D.; Saha-Dasgupta, T.; Das, A.K.; et al. Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington’s Like Disorder in Preclinical Model. Adv. Healthc. Mater. 2021, 10, 2001736. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Sun, S.; Yang, J.; Long, W.; Wang, J.; Mu, X.; Li, Q.; Hao, W.; Zhang, S.; Liu, H.; et al. Nanozyme-Based Bandage with Single-Atom Catalysis for Brain Trauma. ACS Nano 2019, 13, 11552–11560. [Google Scholar] [CrossRef] [PubMed]
- Shlapa, Y.; Solopan, S.; Sarnatskaya, V.; Siposova, K.; Garcarova, I.; Veltruska, K.; Timashkov, I.; Lykhova, O.; Kolesnik, D.; Musatov, A.; et al. Cerium Dioxide Nanoparticles Synthesized via Precipitation at Constant PH: Synthesis, Physical-Chemical and Antioxidant Properties. Colloids Surf. B Biointerfaces 2022, 220, 112960. [Google Scholar] [CrossRef] [PubMed]
- Charbgoo, F.; Ahmad, M.; Darroudi, M. Cerium Oxide Nanoparticles: Green Synthesis and Biological Applications. Int. J. Nanomed. 2017, 12, 1401–1413. [Google Scholar] [CrossRef] [PubMed]
- Turin-Moleavin, I.-A.; Fifere, A.; Lungoci, A.-L.; Rosca, I.; Coroaba, A.; Peptanariu, D.; Nastasa, V.; Pasca, S.-A.; Bostanaru, A.-C.; Mares, M.; et al. In Vitro and In Vivo Antioxidant Activity of the New Magnetic-Cerium Oxide Nanoconjugates. Nanomaterials 2019, 9, 1565. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; He, J.; Chen, L.; Meng, X.; Ma, Y.; Cheng, L.; Tu, K.; Gao, X.; Liu, C.; Zhang, M.; et al. Deciphering the Catalytic Mechanism of Superoxide Dismutase Activity of Carbon Dot Nanozyme. Nat. Commun. 2023, 14, 160. [Google Scholar] [CrossRef]
- Singh, N.; NaveenKumar, S.K.; Geethika, M.; Mugesh, G. A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells. Angew. Chem. Int. Ed. 2021, 60, 3121–3130. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Guan, X.; Wu, F.; Ma, L. CoO Nanozymes with Multiple Catalytic Activities Regulate Atopic Dermatitis. Nanomaterials 2022, 12, 638. [Google Scholar] [CrossRef]
- Xia, F.; Hu, X.; Zhang, B.; Wang, X.; Guan, Y.; Lin, P.; Ma, Z.; Sheng, J.; Ling, D.; Li, F. Ultrasmall Ruthenium Nanoparticles with Boosted Antioxidant Activity Upregulate Regulatory T Cells for Highly Efficient Liver Injury Therapy. Small 2022, 18, 2201558. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tao, H.; Lu, T.; Wu, Y. Adsorption Enhanced the Oxidase-Mimicking Catalytic Activity of Octahedral-Shape Mn3O4 Nanoparticles as a Novel Colorimetric Chemosensor for Ultrasensitive and Selective Detection of Arsenic. J. Colloid Interface Sci. 2021, 584, 114–124. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, A.; Wang, R.; Zhang, Q.; Cui, D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nano-Micro Lett. 2021, 13, 154. [Google Scholar] [CrossRef]
- Wu, H.; Liao, H.; Li, F.; Lee, J.; Hu, P.; Shao, W.; Li, X.; Ling, D. Bioactive ROS-scavenging Nanozymes for Regenerative Medicine: Reestablishing the Antioxidant Firewall. Nano Sel. 2020, 1, 285–297. [Google Scholar] [CrossRef]
- Yang, Z.; Luo, S.; Zeng, Y.; Shi, C.; Li, R. Albumin-Mediated Biomineralization of Shape-Controllable and Biocompatible Ceria Nanomaterials. ACS Appl. Mater. Interfaces 2017, 9, 6839–6848. [Google Scholar] [CrossRef]
- Singh, N.; Savanur, M.A.; Srivastava, S.; D’Silva, P.; Mugesh, G. A Redox Modulatory Mn3O4 Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson’s Disease Model. Angew. Chem. Int. Ed. 2017, 56, 14267–14271. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Fang, G.; Shen, X.; Chong, Y.; Wamer, W.G.; Gao, X.; Chai, Z.; Chen, C.; Yin, J.-J. Facet Energy versus Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS Nano 2016, 10, 10436–10445. [Google Scholar] [CrossRef]
- Dong, S.; Dong, Y.; Liu, B.; Liu, J.; Liu, S.; Zhao, Z.; Li, W.; Tian, B.; Zhao, R.; He, F.; et al. Guiding Transition Metal-Doped Hollow Cerium Tandem Nanozymes with Elaborately Regulated Multi-Enzymatic Activities for Intensive Chemodynamic Therapy. Adv. Mater. 2022, 34, 2107054. [Google Scholar] [CrossRef]
- Tian, R.; Sun, J.; Qi, Y.; Zhang, B.; Guo, S.; Zhao, M. Influence of VO2 Nanoparticle Morphology on the Colorimetric Assay of H2O2 and Glucose. Nanomaterials 2017, 7, 347. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Zhang, L.; Zhao, M.; Wang, Y. Catalase Mimic Property of Co3O4 Nanomaterials with Different Morphology and Its Application as a Calcium Sensor. ACS Appl. Mater. Interfaces 2014, 6, 7090–7098. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Guan, Z.; Jia, S.; Lei, Z.; Lin, S.; Zhang, H.; Ma, Y.; Tian, Z.-Q.; Yang, C.J. Au@Pt Nanoparticle Encapsulated Target-Responsive Hydrogel with Volumetric Bar-Chart Chip Readout for Quantitative Point-of-Care Testing. Angew. Chem. Int. Ed. 2014, 53, 12503–12507. [Google Scholar] [CrossRef]
- Hu, X.; Saran, A.; Hou, S.; Wen, T.; Ji, Y.; Liu, W.; Zhang, H.; He, W.; Yin, J.-J.; Wu, X. Au@PtAg Core/Shell Nanorods: Tailoring Enzyme-like Activities via Alloying. RSC Adv. 2013, 3, 6095. [Google Scholar] [CrossRef]
- Boujakhrout, A.; Díez, P.; Martínez-Ruíz, P.; Sánchez, A.; Parrado, C.; Povedano, E.; Soto, P.; Pingarrón, J.M.; Villalonga, R. Gold Nanoparticles/Silver-Bipyridine Hybrid Nanobelts with Tuned Peroxidase-like Activity. RSC Adv. 2016, 6, 74957–74960. [Google Scholar] [CrossRef]
- Li, J.; Lv, L.; Zhang, G.; Zhou, X.; Shen, A.; Hu, J. Core–Shell Fructus Broussonetia-like Au@Ag@Pt Nanoparticles as Highly Efficient Peroxidase Mimetics for Supersensitive Resonance-Enhanced Raman Sensing. Anal. Methods 2016, 8, 2097–2105. [Google Scholar] [CrossRef]
- Long, L.; Liu, J.; Lu, K.; Zhang, T.; Xie, Y.; Ji, Y.; Wu, X. Highly Sensitive and Robust Peroxidase-like Activity of Au–Pt Core/Shell Nanorod-Antigen Conjugates for Measles Virus Diagnosis. J. Nanobiotechnol. 2018, 16, 46. [Google Scholar] [CrossRef] [PubMed]
- Dashtestani, F.; Ghourchian, H.; Eskandari, K.; Rafiee-Pour, H.-A. A Superoxide Dismutase Mimic Nanocomposite for Amperometric Sensing of Superoxide Anions. Microchim. Acta 2015, 182, 1045–1053. [Google Scholar] [CrossRef]
- Matysik, J.; Długosz, O.; Loureiro, J.; da Silva Pereira, M. do C.; Banach, M. Multioxide-Superoxide Dismutase Enzyme-Nanocomplexes and Their Antioxidant Activity. J. Mater. Sci. 2022, 57, 15954–15966. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, D.; Tian, G.; He, Q.; Zhang, X.; Liao, J.; Mei, L.; Chen, L.; Gao, L.; Zhao, L.; et al. Coordination-Driven Self-Assembly Strategy-Activated Cu Single-Atom Nanozymes for Catalytic Tumor-Specific Therapy. J. Am. Chem. Soc. 2023, 145, 4279–4293. [Google Scholar] [CrossRef]
- Al-Ani, L.A.; Yehye, W.A.; Kadir, F.A.; Hashim, N.M.; AlSaadi, M.A.; Julkapli, N.M.; Hsiao, V.K.S. Hybrid Nanocomposite Curcumin-Capped Gold Nanoparticle-Reduced Graphene Oxide: Anti-Oxidant Potency and Selective Cancer Cytotoxicity. PLoS ONE 2019, 14, e0216725. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Mita, K.; Tanaka, A.; Ito, M. Mechanism of Hydroxylation of Metal Oxide Surfaces. J. Colloid Interface Sci. 2001, 243, 202–207. [Google Scholar] [CrossRef]
- Tamura, H.; Tanaka, A.; Mita, K.; Furuichi, R. Surface Hydroxyl Site Densities on Metal Oxides as a Measure for the Ion-Exchange Capacity. J. Colloid Interface Sci. 1999, 209, 225–231. [Google Scholar] [CrossRef]
- Zhou, X.; You, M.; Wang, F.; Wang, Z.; Gao, X.; Jing, C.; Liu, J.; Guo, M.; Li, J.; Luo, A.; et al. Multifunctional Graphdiyne–Cerium Oxide Nanozymes Facilitate MicroRNA Delivery and Attenuate Tumor Hypoxia for Highly Efficient Radiotherapy of Esophageal Cancer. Adv. Mater. 2021, 33, 2100556. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, Z.; Liu, C.; Ju, E.; Zhang, Y.; Ren, J.; Qu, X. Self-Assembly of Multi-Nanozymes to Mimic an Intracellular Antioxidant Defense System. Angew. Chem. Int. Ed. 2016, 55, 6646–6650. [Google Scholar] [CrossRef]
- Lin, S.; Cheng, Y.; Zhang, H.; Wang, X.; Zhang, Y.; Zhang, Y.; Miao, L.; Zhao, X.; Wei, H. Copper Tannic Acid Coordination Nanosheet: A Potent Nanozyme for Scavenging ROS from Cigarette Smoke. Small 2020, 16, 1902123. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Liu, A.-L.; Hong, L.; Deng, H.-H.; Lin, X.-H. Comparison of the Peroxidase-Like Activity of Unmodified, Amino-Modified, and Citrate-Capped Gold Nanoparticles. ChemPhysChem 2012, 13, 1199–1204. [Google Scholar] [CrossRef]
- Abu Tarboush, N.; Jensen, L.M.R.; Feng, M.; Tachikawa, H.; Wilmot, C.M.; Davidson, V.L. Functional Importance of Tyrosine 294 and the Catalytic Selectivity for the Bis-Fe(IV) State of MauG Revealed by Replacement of This Axial Heme Ligand with Histidine. Biochemistry 2010, 49, 9783–9791. [Google Scholar] [CrossRef]
- Mohammad, M.; Ahmadpoor, F.; Shojaosadati, S.A. Mussel-Inspired Magnetic Nanoflowers as an Effective Nanozyme and Antimicrobial Agent for Biosensing and Catalytic Reduction of Organic Dyes. ACS Omega 2020, 5, 18766–18777. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Tu, T.; Younis, M.R.; Zhu, K.S.; Liu, H.; Lei, S.; Qu, J.; Lin, J.; Huang, P. Clinically Translatable Gold Nanozymes with Broad Spectrum Antioxidant and Anti-Inflammatory Activity for Alleviating Acute Kidney Injury. Theranostics 2021, 11, 9904–9917. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Dong, Y.; Jia, T.; Liu, S.; Liu, J.; Yang, D.; He, F.; Gai, S.; Yang, P.; Lin, J. GSH-Depleted Nanozymes with Hyperthermia-Enhanced Dual Enzyme-Mimic Activities for Tumor Nanocatalytic Therapy. Adv. Mater. 2020, 32, 2002439. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Wang, J.; Li, Y.; Xu, F.; Long, W.; Ouyang, L.; Liu, H.; Jing, Y.; Wang, J.; Dai, H.; et al. Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury. ACS Nano 2019, 13, 1870–1884. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-P.; Wu, T.-H.; Lin, Y.-L.; Liu, C.-Y.; Wang, S.; Lin, S.-Y. Tailoring Enzyme-Like Activities of Gold Nanoclusters by Polymeric Tertiary Amines for Protecting Neurons Against Oxidative Stress. Small 2016, 12, 4127–4135. [Google Scholar] [CrossRef]
- Jain, V.; Bhagat, S.; Singh, M.; Bansal, V.; Singh, S. Unveiling the Effect of 11-MUA Coating on Biocompatibility and Catalytic Activity of a Gold-Core Cerium Oxide-Shell-Based Nanozyme. RSC Adv. 2019, 9, 33195–33206. [Google Scholar] [CrossRef]
- Wang, M.; Liang, Y.; Liao, F.; Younis, M.R.; Zheng, Y.; Zhao, X.; Yu, X.; Guo, W.; Zhang, D.-Y. Iridium Tungstate Nanozyme-Mediated Hypoxic Regulation and Anti-Inflammation for Duplex Imaging Guided Photothermal Therapy of Metastatic Breast Tumors. ACS Appl. Mater. Interfaces 2022, 14, 56471–56482. [Google Scholar] [CrossRef]
- Yan, B.C.; Cao, J.; Liu, J.; Gu, Y.; Xu, Z.; Li, D.; Gao, L. Dietary Fe3O4 Nanozymes Prevent the Injury of Neurons and Blood–Brain Barrier Integrity from Cerebral Ischemic Stroke. ACS Biomater. Sci. Eng. 2021, 7, 299–310. [Google Scholar] [CrossRef]
- Jørgensen, M.; Grönbeck, H. Strain Affects CO Oxidation on Metallic Nanoparticles Non-Linearly. Top. Catal. 2019, 62, 660–668. [Google Scholar] [CrossRef]
- Ellaby, T.; Varambhia, A.; Luo, X.; Briquet, L.; Sarwar, M.; Ozkaya, D.; Thompsett, D.; Nellist, P.D.; Skylaris, C.-K. Strain Effects in Core–Shell PtCo Nanoparticles: A Comparison of Experimental Observations and Computational Modelling. Phys. Chem. Chem. Phys. 2020, 22, 24784–24795. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Jiang, G.; Zhu, H.; Guo, S.; Su, D.; Lu, G.; Sun, S. Tuning Nanoparticle Structure and Surface Strain for Catalysis Optimization. J. Am. Chem. Soc. 2014, 136, 7734–7739. [Google Scholar] [CrossRef] [PubMed]
- Han, S.I.; Lee, S.; Cho, M.G.; Yoo, J.M.; Oh, M.H.; Jeong, B.; Kim, D.; Park, O.K.; Kim, J.; Namkoong, E.; et al. Epitaxially Strained CeO2 /Mn3O4 Nanocrystals as an Enhanced Antioxidant for Radioprotection. Adv. Mater. 2020, 32, 2001566. [Google Scholar] [CrossRef]
- Li, L.; Li, H.; Shi, L.; Shi, L.; Li, T. Tin Porphyrin-Based Nanozymes with Unprecedented Superoxide Dismutase-Mimicking Activities. Langmuir 2022, 38, 7272–7279. [Google Scholar] [CrossRef]
- Niu, X.; Li, X.; Lyu, Z.; Pan, J.; Ding, S.; Ruan, X.; Zhu, W.; Du, D.; Lin, Y. Metal–Organic Framework Based Nanozymes: Promising Materials for Biochemical Analysis. Chem. Commun. 2020, 56, 11338–11353. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Wang, Z.; Cao, F.; Sang, Y.; Dong, K.; Pu, F.; Ren, J.; Qu, X. Constructing Metal–Organic Framework Nanodots as Bio-Inspired Artificial Superoxide Dismutase for Alleviating Endotoxemia. Mater. Horiz. 2019, 6, 1682–1687. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Liu, W.; Guo, J.; Yang, H.; Tang, H.; Tian, M.; Nie, H.; Zhang, X.; Long, W. Design of Monovalent Cerium-Based Metal Organic Frameworks as Bioinspired Superoxide Dismutase Mimics for Ionizing Radiation Protection. ACS Appl. Mater. Interfaces 2022, 14, 54587–54597. [Google Scholar] [CrossRef] [PubMed]
- Baumann, A.E.; Burns, D.A.; Liu, B.; Thoi, V.S. Metal-Organic Framework Functionalization and Design Strategies for Advanced Electrochemical Energy Storage Devices. Commun. Chem. 2019, 2, 86. [Google Scholar] [CrossRef]
- Cooper, L.; Hidalgo, T.; Gorman, M.; Lozano-Fernández, T.; Simón-Vázquez, R.; Olivier, C.; Guillou, N.; Serre, C.; Martineau, C.; Taulelle, F.; et al. A Biocompatible Porous Mg-Gallate Metal–Organic Framework as an Antioxidant Carrier. Chem. Commun. 2015, 51, 5848–5851. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Zheng, Y.-Q. Nitro-Functionalized Metal–Organic Frameworks with Catalase Mimic Properties for Glutathione Detection. Analyst 2019, 144, 6041–6047. [Google Scholar] [CrossRef]
- Zhou, W.; Li, H.; Xia, B.; Ji, W.; Ji, S.; Zhang, W.; Huang, W.; Huo, F.; Xu, H. Selenium-Functionalized Metal-Organic Frameworks as Enzyme Mimics. Nano Res. 2018, 11, 5761–5768. [Google Scholar] [CrossRef]
- Sang, Y.; Cao, F.; Li, W.; Zhang, L.; You, Y.; Deng, Q.; Dong, K.; Ren, J.; Qu, X. Bioinspired Construction of a Nanozyme-Based H2O2 Homeostasis Disruptor for Intensive Chemodynamic Therapy. J. Am. Chem. Soc. 2020, 142, 5177–5183. [Google Scholar] [CrossRef]
- Wang, D.; Wu, H.; Phua, S.Z.F.; Yang, G.; Qi Lim, W.; Gu, L.; Qian, C.; Wang, H.; Guo, Z.; Chen, H.; et al. Self-Assembled Single-Atom Nanozyme for Enhanced Photodynamic Therapy Treatment of Tumor. Nat. Commun. 2020, 11, 357. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Mahmoud, G.A.-E.; Sharmouk, W. A Cerium-Based MOFzyme with Multi-Enzyme-like Activity for the Disruption and Inhibition of Fungal Recolonization. J. Mater. Chem. B 2020, 8, 7548–7556. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free. Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Zahra, K.F.; Lefter, R.; Ali, A.; Abdellah, E.-C.; Trus, C.; Ciobica, A.; Timofte, D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. Oxidative Med. Cell. Longev. 2021, 2021, 9965916. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.A.S.; Lee, J.X.; Yusof, F. Platinum Nanoparticles: The Potential Antioxidant in the Human Lung Cancer Cells. Antioxidants 2022, 11, 986. [Google Scholar] [CrossRef] [PubMed]
- Alpaslan, E.; Yazici, H.; Golshan, N.H.; Ziemer, K.S.; Webster, T.J. PH-Dependent Activity of Dextran-Coated Cerium Oxide Nanoparticles on Prohibiting Osteosarcoma Cell Proliferation. ACS Biomater. Sci. Eng. 2015, 1, 1096–1103. [Google Scholar] [CrossRef]
- Asati, A.; Santra, S.; Kaittanis, C.; Perez, J.M. Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles. ACS Nano 2010, 4, 5321–5331. [Google Scholar] [CrossRef]
- Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P.G. Hydrogen Peroxide: A Metabolic by-Product or a Common Mediator of Ageing Signals? Nat. Rev. Mol. Cell. Biol. 2007, 8, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Bartley, M.G.; Marquardt, K.; Kirchhof, D.; Wilkins, H.M.; Patterson, D.; Linseman, D.A. Overexpression of Amyloid-β Protein Precursor Induces Mitochondrial Oxidative Stress and Activates the Intrinsic Apoptotic Cascade. J. Alzheimer’s Dis. 2012, 28, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Westermann, B. Nitric Oxide Links Mitochondrial Fission to Alzheimer’s Disease. Sci. Signal. 2009, 2, pe29. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zou, H.; Wu, X.; Liu, C.; Situ, B.; Zheng, L.; Yang, G. Nanozymatic Antioxidant System Based on MoS2 Nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 12453–12462. [Google Scholar] [CrossRef]
- Kwon, H.J.; Cha, M.-Y.; Kim, D.; Kim, D.K.; Soh, M.; Shin, K.; Hyeon, T.; Mook-Jung, I. Mitochondria-Targeting Ceria Nanoparticles as Antioxidants for Alzheimer’s Disease. ACS Nano 2016, 10, 2860–2870. [Google Scholar] [CrossRef]
- Chen, Q.; Du, Y.; Zhang, K.; Liang, Z.; Li, J.; Yu, H.; Ren, R.; Feng, J.; Jin, Z.; Li, F.; et al. Tau-Targeted Multifunctional Nanocomposite for Combinational Therapy of Alzheimer’s Disease. ACS Nano 2018, 12, 1321–1338. [Google Scholar] [CrossRef]
- Kwon, H.J.; Kim, D.; Seo, K.; Kim, Y.G.; Han, S.I.; Kang, T.; Soh, M.; Hyeon, T. Ceria Nanoparticle Systems for Selective Scavenging of Mitochondrial, Intracellular, and Extracellular Reactive Oxygen Species in Parkinson’s Disease. Angew. Chem. Int. Ed. 2018, 57, 9408–9412. [Google Scholar] [CrossRef]
- Fu, S.; Chen, H.; Yang, W.; Xia, X.; Zhao, S.; Xu, X.; Ai, P.; Cai, Q.; Li, X.; Wang, Y.; et al. ROS-Targeted Depression Therapy via BSA-Incubated Ceria Nanoclusters. Nano Lett. 2022, 22, 4519–4527. [Google Scholar] [CrossRef]
- Hao, T.; Li, J.; Yao, F.; Dong, D.; Wang, Y.; Yang, B.; Wang, C. Injectable Fullerenol/Alginate Hydrogel for Suppression of Oxidative Stress Damage in Brown Adipose-Derived Stem Cells and Cardiac Repair. ACS Nano 2017, 11, 5474–5488. [Google Scholar] [CrossRef]
- Han, J.; Kim, Y.S.; Lim, M.-Y.; Kim, H.Y.; Kong, S.; Kang, M.; Choo, Y.W.; Jun, J.H.; Ryu, S.; Jeong, H.; et al. Dual Roles of Graphene Oxide to Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair. ACS Nano 2018, 12, 1959–1977. [Google Scholar] [CrossRef]
- Li, F.; Qiu, Y.; Xia, F.; Sun, H.; Liao, H.; Xie, A.; Lee, J.; Lin, P.; Wei, M.; Shao, Y.; et al. Dual Detoxification and Inflammatory Regulation by Ceria Nanozymes for Drug-Induced Liver Injury Therapy. Nano Today 2020, 35, 100925. [Google Scholar] [CrossRef]
- Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S.; Wang, X.; Wu, J.; Li, S.; Wei, H. ROS Scavenging Mn3O4 Nanozymes for in Vivo Anti-Inflammation. Chem. Sci. 2018, 9, 2927–2933. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Zhao, J.; Sun, J.; Hu, M.; Yang, X. Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease. ACS Nano 2018, 12, 8882–8892. [Google Scholar] [CrossRef]
- Zhao, S.; Duan, H.; Yang, Y.; Yan, X.; Fan, K. Fenozyme Protects the Integrity of the Blood–Brain Barrier against Experimental Cerebral Malaria. Nano Lett. 2019, 19, 8887–8895. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, S.; Yang, Z.; Wang, Z.; Tian, X.; Zhou, R. Self-Cascade MoS2 Nanozymes for Efficient Intracellular Antioxidation and Hepatic Fibrosis Therapy. Nanoscale 2021, 13, 12613–12622. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Wei, H.; Li, J.; Li, M.; Wang, Y.; Zhang, Z.; Cao, T.; Carlos, C.; German, L.G.; Jiang, D.; et al. Prevention of Hepatic Ischemia-Reperfusion Injury by Carbohydrate-Derived Nanoantioxidants. Nano Lett. 2020, 20, 6510–6519. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, K.; Ji, X.; Askhatova, D.; Du, R.; Lu, L.; Shi, J. Comprehensive Insights into the Multi-Antioxidative Mechanisms of Melanin Nanoparticles and Their Application to Protect Brain from Injury in Ischemic Stroke. J. Am. Chem. Soc. 2017, 139, 856–862. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Liu, H.; Li, C.; Younis, M.R.; Lei, S.; Yang, C.; Lin, J.; Li, Z.; Huang, P. Ceria Nanozymes with Preferential Renal Uptake for Acute Kidney Injury Alleviation. ACS Appl. Mater. Interfaces 2020, 12, 56830–56838. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Mao, W.; Feng, W.; Lu, S.; Wan, J.; Song, X.; Chen, Y.; Peng, B. Engineering Ultrasmall Ferroptosis-Targeting and Reactive Oxygen/Nitrogen Species-Scavenging Nanozyme for Alleviating Acute Kidney Injury. Adv Funct Mater. 2022, 32, 2109221. [Google Scholar] [CrossRef]
- Su, X.; Xie, X.; Liu, L.; Lv, J.; Song, F.; Perkovic, V.; Zhang, H. Comparative Effectiveness of 12 Treatment Strategies for Preventing Contrast-Induced Acute Kidney Injury: A Systematic Review and Bayesian Network Meta-Analysis. Am. J. Kidney Dis. 2017, 69, 69–77. [Google Scholar] [CrossRef]
- Fraga, C.M.; Tomasi, C.D.; de Castro Damasio, D.; Vuolo, F.; Ritter, C.; Dal-Pizzol, F. N-Acetylcysteine plus Deferoxamine for Patients with Prolonged Hypotension Does Not Decrease Acute Kidney Injury Incidence: A Double Blind, Randomized, Placebo-Controlled Trial. Crit. Care 2016, 20, 331. [Google Scholar] [CrossRef]
- Liesenfeld, L.F.; Wagner, B.; Hillebrecht, H.C.; Brune, M.; Eckert, C.; Klose, J.; Schmidt, T.; Büchler, M.W.; Schneider, M. HIPEC-Induced Acute Kidney Injury: A Retrospective Clinical Study and Preclinical Model. Ann. Surg. Oncol. 2022, 29, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q.; Sun, H.; Fang, C.; Xia, F.; Liao, H.; Lee, J.; Wang, J.; Xie, A.; Ren, J.; Guo, X.; et al. Catalytic Activity Tunable Ceria Nanoparticles Prevent Chemotherapy-Induced Acute Kidney Injury without Interference with Chemotherapeutics. Nat. Commun. 2021, 12, 1436. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Liu, H.; Younis, M.R.; Lei, S.; Yang, C.; Lin, J.; Qu, J.; Huang, P. Ultrasmall Platinum Nanozymes as Broad-Spectrum Antioxidants for Theranostic Application in Acute Kidney Injury. Chem. Eng. J. 2021, 409, 127371. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Younis, M.R.; Liu, H.; Lei, S.; Wan, Y.; Qu, J.; Lin, J.; Huang, P. Multi-Enzyme Mimetic Ultrasmall Iridium Nanozymes as Reactive Oxygen/Nitrogen Species Scavengers for Acute Kidney Injury Management. Biomaterials 2021, 271, 120706. [Google Scholar] [CrossRef]
- Meng, L.; Feng, J.; Gao, J.; Zhang, Y.; Mo, W.; Zhao, X.; Wei, H.; Guo, H. Reactive Oxygen Species- and Cell-Free DNA-Scavenging Mn3O4 Nanozymes for Acute Kidney Injury Therapy. ACS Appl. Mater. Interfaces 2022, 14, 50649–50663. [Google Scholar] [CrossRef]
- Dinu Gugoasa, L.A.; Pogacean, F.; Kurbanoglu, S.; Tudoran, L.-B.; Serban, A.B.; Kacso, I.; Pruneanu, S. Graphene-Gold Nanoparticles Nanozyme-Based Electrochemical Sensor with Enhanced Laccase-Like Activity for Determination of Phenolic Substrates. J. Electrochem. Soc. 2021, 168, 067523. [Google Scholar] [CrossRef]
- Dinu, L.A.; Kurbanoglu, S.; Romanitan, C.; Pruneanu, S.; Serban, A.B.; Stoian, M.C.; Pachiu, C.; Craciun, G. Electrodeposited Copper Nanocubes on Multi-Layer Graphene: A Novel Nanozyme for Ultrasensitive Dopamine Detection from Biological Samples. Appl. Surf. Sci. 2022, 604, 154392. [Google Scholar] [CrossRef]
- Dinu, L.A.; Baracu, A.M.; Brincoveanu, O. The Non-Enzymatic Detection of the Pollutant Bisphenol A Using S-Graphene as Nanozyme Material. In Proceedings of the 2022 International Semiconductor Conference (CAS), Poiana Brasov, Romania, 12–14 October 2022; IEEE: New York, NY, USA; pp. 95–98. [Google Scholar]
- Liang, H.; Liu, Y.; Qileng, A.; Shen, H.; Liu, W.; Xu, Z.; Liu, Y. PEI-Coated Prussian Blue Nanocubes as PH-Switchable Nanozyme: Broad-PH-Responsive Immunoassay for Illegal Additive. Biosens. Bioelectron. 2023, 219, 114797. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, J.; Zhu, J.; Zheng, Y.-Q. Co 3 O 4 Nanocrystals as an Efficient Catalase Mimic for the Colorimetric Detection of Glutathione. J. Mater. Chem. B 2018, 6, 6858–6864. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Cai, Y.; Dong, T.; Zhang, Y.; Liu, X.; Zhang, X.; Zeng, L.; Liu, A. Vanadium Nitride@carbon Nanofiber Composite: Synthesis, Cascade Enzyme Mimics and Its Sensitive and Selective Colorimetric Sensing of Superoxide Anion. Biosens. Bioelectron. 2022, 210, 114285. [Google Scholar] [CrossRef]
- Liu, C.; Cai, Y.; Wang, J.; Liu, X.; Ren, H.; Yan, L.; Zhang, Y.; Yang, S.; Guo, J.; Liu, A. Facile Preparation of Homogeneous Copper Nanoclusters Exhibiting Excellent Tetraenzyme Mimetic Activities for Colorimetric Glutathione Sensing and Fluorimetric Ascorbic Acid Sensing. ACS Appl. Mater. Interfaces 2020, 12, 42521–42530. [Google Scholar] [CrossRef]
- Liu, C.; You, X.; Lu, D.; Shi, G.; Deng, J.; Zhou, T. Gelsolin Encountering Ag Nanorods/Triangles: An Aggregation-Based Colorimetric Sensor Array for in Vivo Monitoring the Cerebrospinal Aβ 42% as an Indicator of Cd2+ Exposure-Related Alzheimer’s Disease Pathogenesis. ACS Appl. Bio Mater. 2020, 3, 7965–7973. [Google Scholar] [CrossRef]
- Nakamura, H.; Takada, K. Reactive Oxygen Species in Cancer: Current Findings and Future Directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef]
- Dias, V.; Junn, E.; Mouradian, M.M. The Role of Oxidative Stress in Parkinson’s Disease. J. Park. Dis. 2013, 3, 461–491. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, H.; Chen, K.; Zhou, F.; Magdassi, S.; Lan, M. Two-Dimensional Mesoporous Nitrogen-Rich Carbon Nanosheets Loaded with CeO2 Nanoclusters as Nanozymes for the Electrochemical Detection of Superoxide Anions in HepG2 Cells. Biosens. Bioelectron. 2022, 209, 114229. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Shi, L.; Sun, W.; Zhao, H.; Li, H.; He, H.; Lan, M. A Facile Way to Fabricate Manganese Phosphate Self-Assembled Carbon Networks as Efficient Electrochemical Catalysts for Real-Time Monitoring of Superoxide Anions Released from HepG2 Cells. Biosens. Bioelectron. 2018, 102, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, H.; Gao, Q.; Chen, K.; Lan, M. Facile Synthesis of Ultrathin Two-Dimensional Graphene-like CeO2–TiO2 Mesoporous Nanosheet Loaded with Ag Nanoparticles for Non-Enzymatic Electrochemical Detection of Superoxide Anions in HepG2 Cells. Biosens. Bioelectron. 2021, 184, 113236. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Chen, J.; Shi, Z.; Yuan, C.; Zhou, G.; Liu, Q.; Chen, H.; Zeng, Q.; Liang, T.; Tang, K.L.; et al. Cobalt Phosphates Loaded into Iodine-Spaced Reduced Graphene Oxide Nanolayers for Electrochemical Measurement of Superoxide Generated by Cells. ACS Appl. Nano Mater. 2021, 4, 3631–3638. [Google Scholar] [CrossRef]
Factor | Nanozyme | Catalytic Activity | Outcome |
---|---|---|---|
Size | CeO2 nanoparticle (~5–28 nm) [13] | CAT, SOD | Catalytic activities are enhanced for smaller particles and for the particles with larger Ce3+ fractions |
Carbon dot (2 nm) [76] | SOD | SOD activity of over 10,000 U/mg | |
CeVO4 nanorod (50–150 nm) [77] | SOD | The inhibition of formazan production by rods with sizes of 50, 100, and 150 were 4.12 ± 0.19, 3.93 ± 0.20, and 2.57 ± 0.07 ng/µL, respectively | |
Morphology | Ceria nanomaterial (nanocluster, nanoparticle, nanochain) [83] | SOD | SOD activities: nanoclusters > nanochains > nanoparticles |
Mn3O4 (flower-like morphology, flake-like morphology, hexagonal plates, polyhedrons, cubes) [84] | CAT, SOD, GPx | Flower-like Mn3O4 with a specific surface area of 97.7 m2/g exhibited the highest CAT, SOD, and GPx activities | |
Co3O4 (nanoplates, nanorods, nanocubes) [88] | CAT | CAT activity: Co3O4 nanoplates > Co3O4 nanorods > Co3O4 nanocubes | |
Composition | PVP–PtCuNCs [51] | CAT, SOD | PVP–PtCuNCs exhibited 10-fold higher SOD-like activity and 4-fold higher CAT-like activity than PVP–PtNCs |
Au core/Ce shell-based nanozyme [21] | SOD | Can work under extreme conditions: pH (2–11) and temperatures up to 90 °C | |
CeO2 nanoparticles immobilized on 2D graphdiynes [101] | CAT | 4.2-fold greater rate constant in H2O2 decomposition than CeO2 nanoparticles Prevents CeO2 aggregation | |
Surface modification | AuNP capped with N-acetylcysteine [107] | SOD | Higher SOD-like activity than free N-acetylcysteine and gold nanoparticles |
PEG-coated Ce-Bi@DMSN [108] | CAT | PEG-coated surface endows the nanocomposite with high hydrophilicity | |
MOF | Grafting PhSeBr to a Zr(IV)-based UiO-66-NH2 framework [125] | GPx | PhSeBr acted as a donator, while the Zr(IV)-based UiO-66-NH2 framework with high surface area and uniform porosity provided more catalytic active centers, resulting in a high enzyme-like activity |
PZIF67-AT [126] | SOD | Simultaneously increased SOD activity and suppressed CAT and GPx activity. Effectively accumulated H2O2 for Fenton reaction-based chemodynamic therapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thao, N.T.M.; Do, H.D.K.; Nam, N.N.; Tran, N.K.S.; Dan, T.T.; Trinh, K.T.L. Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications. Micromachines 2023, 14, 1017. https://doi.org/10.3390/mi14051017
Thao NTM, Do HDK, Nam NN, Tran NKS, Dan TT, Trinh KTL. Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications. Micromachines. 2023; 14(5):1017. https://doi.org/10.3390/mi14051017
Chicago/Turabian StyleThao, Nguyen Thi My, Hoang Dang Khoa Do, Nguyen Nhat Nam, Nguyen Khoi Song Tran, Thach Thi Dan, and Kieu The Loan Trinh. 2023. "Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications" Micromachines 14, no. 5: 1017. https://doi.org/10.3390/mi14051017
APA StyleThao, N. T. M., Do, H. D. K., Nam, N. N., Tran, N. K. S., Dan, T. T., & Trinh, K. T. L. (2023). Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications. Micromachines, 14(5), 1017. https://doi.org/10.3390/mi14051017