A Noninvasive Sweat Glucose Biosensor Based on Glucose Oxidase/Multiwalled Carbon Nanotubes/Ferrocene-Polyaniline Film/Cu Electrodes
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Instruments
2.2. Electroplating of Ferrocene-Polyaniline Film (F-P Film)
2.3. Modification of Electrodes with MWCNTs and GOx
2.4. Fabrication Process of the Detection Chip
2.5. Design and Fabrication of the Paper-Based Enzyme Biosensors (PEB) for Glucose Detection from Human Sweat
3. Results and Discussion
3.1. Characterization of F-P Film and MWCNTs
3.2. Characterization of the Paper-Based Enzyme Anode
3.3. Performance Analysis of the Biosensor in Human Sweat
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lutty, G.A. Effects of diabetes on the eye. Investig. Ophthalmol. Visual Sci. 2013, 54, ORSF81–ORSF87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colagiuri, S.; Borch-Johnsen, K.; Glumer, C.; Vistisen, D. There really is an epidemic of type 2 diabetes. Diabetologia 2005, 48, 1459–1463. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, B.S.B.; Yderstraede, K.B.; Carstensen, B.; Skov, O.; Beck-Nielsen, H. Substantial reduction in the number of amputations among patients with diabetes: A cohort study over 16 years. Diabetologia 2016, 59, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; Fernandes, J.D.D.; Ohlrogge, A.W.; Malanda, B. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Channa, A.; Jeoti, V.; Stojanović, G.M. Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring. Sensors 2022, 22, 638. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.; Taylor, E.; Davison, T.W. Clinical evaluation of a continuous minimally invasive glucose flux sensor placed over ultrasonically permeated skin. Diabetes Technol. Ther. 2004, 6, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Jang, S. Minimally Invasive Glucometer Using the Magneto-Optical Rotatory Effect (MORE). Ph.D. Thesis., University of Connecticut, Storrs, CT, USA, 2 May 2022. AAI3050192. Available online: https://www.proquest.com/docview/304799540 (accessed on 2 August 2022).
- Babenko, A.Y.; Kononova, Y.A.; Tsiberkin, A.I.; Khodzitsky, M.K.; Grineva, E.N. The dynamics of invasive and noninvasive blood glucose monitoring methods: Recent trends. Diabetes Mellit. 2016, 19, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Clarke, S.E.; Foster, J.R. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br. J. Biomed. Sci. 2012, 69, 83–93. [Google Scholar] [CrossRef]
- Dorsaf, G.; Yacine, M.; Khaled, N. Non-invasive glucose monitoring: Application and technologies. Curr. Res. Diabetes Obes. J. 2018, 8, 555740. [Google Scholar] [CrossRef]
- Khor, S.M.; Choi, J.; Won, P.; Ko, S.H. Challenges and strategies in developing an enzymatic wearable sweat glucose biosensor as a practical point-of-care monitoring tool for type II diabetes. Nanomaterials 2022, 12, 221. [Google Scholar] [CrossRef]
- Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160–171. [Google Scholar] [CrossRef]
- Goodarzi, M.; Sharma, S.; Ramon, H.; Saeys, W. Multivariate calibration of NIR spectroscopic sensors for continuous glucose monitoring. Trends Anal. Chem. 2015, 67, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Kaya, T.; Liu, G.; Ho, J.; Yelamarthi, K.; Miller, K.; Edwards, J.; Stannard, A. Wearable Sweat Sensors: Background and Current Trends. Electroanalysis 2019, 31, 411–421. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, L.; Song, C.; Liu, Y.; Xuan, X.; Wang, F.; Zhong, J.; Sun, L. Integrated solid-state wearable sweat sensor system for sodium and potassium ion concentration detection. Sens. Rev. 2022, 42, 76–88. [Google Scholar] [CrossRef]
- Malin, S.F.; Ruchti, T.L.; Blank, T.B.; Thennadil, S.N.; Monfre, S.L. Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy. Clin. Chem. 1999, 45, 1651–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olarte, O.; Chilo, J.; Pelegri-Sebastia, J.; Barbe, K.; Van Moer, W. Glucose detection in human sweat using an electronic nose. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society; Annual International Conference, Osaka, Japan, 3–7 July 2013; Volume 2013, pp. 1462–1465. [Google Scholar] [CrossRef]
- Pohanka, M. Screen Printed Electrodes in Biosensors and Bioassays. A Review. Int. J. Electrochem. Sci. 2020, 15, 11024–11035. [Google Scholar] [CrossRef]
- Donmez, S. A novel electrochemical glucose biosensor based on a poly (L-aspartic acid)-modified carbon-paste electrode. Prep. Biochem. Biotechnol. 2020, 50, 961–967. [Google Scholar] [CrossRef]
- Shamsazar, A.; Shamsazar, F.; Asadi, A.; Rezaei-Zarchi, S. A Glucose Biosensor Based on Glucose Oxidase enzyme and ZnO Nanoparticles Modified Carbon Paste Electrode. Int. J. Electrochem. Sci. 2016, 11, 9891–9901. [Google Scholar] [CrossRef]
- Stoces, M.; Kalcher, K.; Svancara, I.; Vytras, K. A New Biosensor for Glucose Based on Carbon Paste and Enzyme Immobilized onto the Polyaniline Film. Int. J. Electrochem. Sci. 2011, 6, 1917–1926. [Google Scholar]
- Ma, T.; Wang, Y.; Hou, Y.; Wang, E.; Yin, G.; Hasebe, Y.; Zhang, Z. An amperometric glucose biosensor based on electrostatic force induced layer-by-layer GOD/chitosan/pyrite on a glassy carbon electrode. Anal. Sci. 2022, 38, 553–562. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Hasebe, Y.; Zhang, Z.; Tao, D. Determination of Glucose using a Biosensor Based on Glucose Oxidase Immobilized on a Molybdenite-Decorated Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2020, 15, 1595–1605. [Google Scholar] [CrossRef]
- Patterson, M.J.; Galloway, S.D.; Nimmo, M.A. Variations in regional sweat composition in normal human males. Exp. Physiol. 2000, 85, 869–875. [Google Scholar] [CrossRef] [PubMed]
- La Count, T.D.; Jajack, A.; Heikenfeld, J.; Kasting, G.B. Modeling glucose transport from systemic circulation to sweat. J. Pharm. Sci. 2019, 108, 364–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Sun, J. Sweat detection theory and fluid driven methods: A review. Nanotechnol. Precis. Eng. 2020, 3, 126–140. [Google Scholar] [CrossRef]
- Vaquer, A.; Baron, E.; de la Rica, R. Detection of low glucose levels in sweat with colorimetric wearable biosensors. Analyst 2021, 146, 3273–3279. [Google Scholar] [CrossRef]
- Han, J.Y.; Li, M.J.; Li, H.J.; Li, C.P.; Ye, J.S.; Yang, B.H. Pt-poly(L-lactic acid) microelectrode-based microsensor for in situ glucose detection in sweat. Biosens. Bioelectron. 2020, 170, 7. [Google Scholar] [CrossRef]
- Katseli, V.; Economou, A.; Kokkinos, C. Smartphone-addressable 3D-printed electrochemical ring for nonenzymatic self-monitoring of glucose in human sweat. Anal. Chem. 2021, 93, 3331–3336. [Google Scholar] [CrossRef]
- Moyer, J.; Wilson, D.; Finkelshtein, I.; Wong, B.; Potts, R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther. 2012, 14, 398–402. [Google Scholar] [CrossRef]
- Cao, Q.P.; Liang, B.; Tu, T.T.; Wei, J.W.; Fang, L.; Ye, X.S. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Adv. 2019, 9, 5674–5681. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Fu, Y.C.; Xiang, C.H.; Xie, Q.J.; Zhang, Q.F.; Su, Y.H.; Wang, L.H.; Yao, S.Z. Electropolymerization of preoxidized catecholamines on Prussian blue matrix to immobilize glucose oxidase for sensitive amperometric biosensing. Biosens. Bioelectron. 2009, 24, 2726–2729. [Google Scholar] [CrossRef] [PubMed]
- Guadagnini, L.; Mignani, A.; Scavetta, E.; Tonelli, D. Ni(OH)2 versus Ni/Al layered double hydroxides as matrices to immobilize glucose oxidase. Electrochim. Acta 2010, 55, 1217–1220. [Google Scholar] [CrossRef]
- Li, J.R.; Cai, M.; Chen, T.F.; Jiang, L. Enzyme electrodes with conductive polymer membranes and Langmuir-Blodgett films. Thin Solid Films 1989, 180, 205–210. [Google Scholar] [CrossRef]
- Hsiue, G.H.; Liu, C.H.; Wang, C.C. Preparation of glucose oxidase membrane for the application of glucose sensor by plasma activation. J. Appl. Polym. Sci. 1989, 38, 1591–1605. [Google Scholar] [CrossRef]
- Bankar, S.B.; Bule, M.V.; Singhal, R.S.; Ananthanarayan, L. Glucose oxidase—An overview. Biotechnol. Adv. 2009, 27, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Khatami, S.H.; Vakili, O.; Ahmadi, N.; Soltani Fard, E.; Mousavi, P.; Khalvati, B.; Maleksabet, A.; Savardashtaki, A.; Taheri-Anganeh, M.; Movahedpour, A. Glucose oxidase: Applications, sources, and recombinant production. Biotechnol. Appl. Biochem. 2022, 69, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.M.; Wong, K.H.; Chen, X.D. Glucose oxidase: Natural occurrence, function, properties and industrial applications. Appl. Microbiol. Biotechnol. 2008, 78, 927–938. [Google Scholar] [CrossRef]
- Baker, L.B.; Model, J.B.; Barnes, K.A.; Anderson, M.L.; Lee, S.P.; Lee, K.A.; Brown, S.D.; Reimel, A.J.; Roberts, T.J.; Nuccio, R.P.; et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 2020, 6, 12. [Google Scholar] [CrossRef]
- Bilal, M.; Zhao, Y.; Noreen, S.; Shah, S.Z.H.; Bharagava, R.N.; Iqbal, H.M.N. Modifying bio-catalytic properties of enzymes for efficient biocatalysis: A review from immobilization strategies viewpoint. Biocatal. Biotransform. 2019, 37, 159–182. [Google Scholar] [CrossRef]
- Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, C.; Zhang, Y.; He, F.; Liu, M.Z.; Li, X.L. Preparation of graphene nano-sheet bonded PDA/MOF microcapsules with immobilized glucose oxidase as a mimetic multi-enzyme system for electrochemical sensing of glucose. J. Mater. Chem. B 2016, 4, 3695–3702. [Google Scholar] [CrossRef]
- Hsiue, G.-H.; Wang, C.-C. Studies on the physical properties of polyethylene-g-acrylic acid to immobilizing glucose oxidase. J. Appl. Polym. Sci. 1990, 40, 235–247. [Google Scholar] [CrossRef]
- Lei, L.H.; Cao, Z.J.; Xie, Q.J.; Fu, Y.C.; Tan, Y.M.; Ma, M.; Yao, S.Z. One-pot electrodeposition of 3-aminopropyltriethoxysilane-chitosan hybrid gel film to immobilize glucose oxidase for biosensing. Sens. Actuators B-Chem. 2011, 157, 282–289. [Google Scholar] [CrossRef]
- Morthensen, S.T.; Meyer, A.S.; Jorgensen, H.; Pinelo, M. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems. Biochem. Eng. J. 2017, 117, 41–47. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Dong, S.J. Electrochemical characteristics of glucose oxidase adsorbed at carbon nanotubes modified electrode with ionic liquid as binder. Electroanalysis 2007, 19, 55–59. [Google Scholar] [CrossRef]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef]
- Chen, X.M.; Wu, G.H.; Jiang, Y.Q.; Wang, Y.R.; Chen, X. Graphene and graphene-based nanomaterials: The promising materials for bright future of electroanalytical chemistry. Analyst 2011, 136, 4631–4640. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.A.; Lv, J.; Yin, L.; Jeerapan, I.; Innocenzi, G.; Soto, F.; Ha, Y.G.; Wang, J. Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv. Funct. Mater. 2020, 30, 10. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Pauluhn, J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: Toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol. Sci. 2010, 113, 226–242. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, X.D.; Zheng, J.B.; Zhang, H.F.; Tang, H.S. Direct electrochemistry and electrocatalysis behaviors of glucose oxidase based on hyaluronic acid-carbon nanotubes-ionic liquid composite film. Chin. J. Chem. 2010, 28, 1890–1896. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.Y.; Liu, D.P.; Song, S.Y.; Zhang, H.J. Green synthesis of Pt/CeO2/graphene hybrid nanomaterials with remarkably enhanced electrocatalytic properties. Chem. Commun. 2012, 48, 2885–2887. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.L.; Zhai, S.Y.; Chen, G.F.; Zhang, K.; Yue, Q.L.; Wang, L.; Liu, J.F.; Jia, J.B. Effects of morphology of nanostructured ZnO on direct electrochemistry and biosensing properties of glucose oxidase. J. Electroanal. Chem. 2011, 656, 198–205. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Chen, C.; Xie, Q.J.; Liu, P.G. Electrodeposition of a biocompatible hydroxyapatite matrix to immobilize glucose oxidase for sensitive glucose biosensing. Microchim. Acta 2009, 165, 223–229. [Google Scholar] [CrossRef]
- Ahmed, S.; Bui, M.P.N.; Abbas, A. Paper-based chemical and biological sensors: Engineering aspects. Biosens. Bioelectron. 2016, 77, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Penkov, O.V. Chapter 1-Introduction to graphene. In Tribology of Graphene; Penkov, O.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–10. [Google Scholar]
- Zhang, X.Y.; Liu, M.Y.; Zhang, Y.L.; Yang, B.; Ji, Y.; Feng, L.; Tao, L.; Li, S.X.; Wei, Y. Combining mussel-inspired chemistry and the Michael addition reaction to disperse carbon nanotubes. RSC Adv. 2012, 2, 12153–12155. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Y.; Liu, Z.; Rong, F.; Wang, Y.; Fu, D. Covalently immobilized biosensor based on gold nanoparticles modified TiO2 nanotube arrays. J. Electroanal. Chem. 2011, 650, 241–247. [Google Scholar] [CrossRef]
- Bas, S.Z. Gold nanoparticle functionalized graphene oxide modified platinum electrode for hydrogen peroxide and glucose sensing. Mater. Lett. 2015, 150, 20–23. [Google Scholar] [CrossRef]
- Vilian, A.T.E.; Chen, S.-M. Direct electrochemistry and electrocatalysis of glucose oxidase based poly(L-arginine)-multiwalled carbon nanotubes. RSC Adv. 2014, 4, 50771–50781. [Google Scholar] [CrossRef]
- Zhou, X.; Tan, B.; Zheng, X.; Kong, D.; Li, Q. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing. Anal. Biochem. 2015, 489, 9–16. [Google Scholar] [CrossRef]
- Parlak, O.; Incel, A.; Uzun, L.; Turner, A.P.F.; Tiwari, A. Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosens. Bioelectron. 2017, 89, 545–550. [Google Scholar] [CrossRef]
Electrode Platform | Response Time (s) | Linear Range (mM) | LOD (μM) | Ref. |
---|---|---|---|---|
GOD/MAA/AuNPs/TiO2NT/Ti | <10 | 0.40–8 | 310 | [59] |
GOx-PoPD/AuNPs-GO/Pt | 10 | 0.1–3.8 | 75 | [60] |
GOx/P-L-Arg/f-MWCNTs/GCE | <5 | 0.004–6 | 0.1 | [61] |
Cs/GOx/PGA/GCE | - | 0.5–5.5 | 120 | [62] |
GOD/AuNPs-MoS2/Au | - | 0.25–13.2 | 0.042 | [63] |
GOD/GA/MLN/GCE | - | 1.0–135 | 100 | [23] |
GOx/PAA/CPE | 4 | 0.05–1 | 69.2 | [19] |
GOx/MWCNTs/F-P/Cu | <5 | 0–14 | 81 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Liu, L.; Yu, S.; Lv, F.; Guo, M.; Luo, Q.; Zhang, S.; Wang, Z.; Wu, L.; Lin, Y.; et al. A Noninvasive Sweat Glucose Biosensor Based on Glucose Oxidase/Multiwalled Carbon Nanotubes/Ferrocene-Polyaniline Film/Cu Electrodes. Micromachines 2022, 13, 2142. https://doi.org/10.3390/mi13122142
Guan Y, Liu L, Yu S, Lv F, Guo M, Luo Q, Zhang S, Wang Z, Wu L, Lin Y, et al. A Noninvasive Sweat Glucose Biosensor Based on Glucose Oxidase/Multiwalled Carbon Nanotubes/Ferrocene-Polyaniline Film/Cu Electrodes. Micromachines. 2022; 13(12):2142. https://doi.org/10.3390/mi13122142
Chicago/Turabian StyleGuan, Yanfang, Lei Liu, Shaobo Yu, Feng Lv, Mingshuo Guo, Qing Luo, Shukai Zhang, Zongcai Wang, Lan Wu, Yang Lin, and et al. 2022. "A Noninvasive Sweat Glucose Biosensor Based on Glucose Oxidase/Multiwalled Carbon Nanotubes/Ferrocene-Polyaniline Film/Cu Electrodes" Micromachines 13, no. 12: 2142. https://doi.org/10.3390/mi13122142
APA StyleGuan, Y., Liu, L., Yu, S., Lv, F., Guo, M., Luo, Q., Zhang, S., Wang, Z., Wu, L., Lin, Y., & Liu, G. (2022). A Noninvasive Sweat Glucose Biosensor Based on Glucose Oxidase/Multiwalled Carbon Nanotubes/Ferrocene-Polyaniline Film/Cu Electrodes. Micromachines, 13(12), 2142. https://doi.org/10.3390/mi13122142