Editorial for Special Issue “Piezoelectric Aluminium Scandium Nitride (AlScN) Thin Films: Material Development and Applications in Microdevices”
Conflicts of Interest
References
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Tasnádi, F.; Alling, B.; Höglund, C.; Wingqvist, G.; Birch, J.; Hultman, L.; Abrikosov, I.A. Origin of the Anomalous Piezoelectric Response in Wurtzite ScxAl1−xNAlloys. Phys. Rev. Lett. 2010, 104, 137601. [Google Scholar] [CrossRef] [PubMed]
- Fichtner, S.; Wolff, N.; Lofink, F.; Kienle, L.; Wagner, B. AlScN: A III-V semiconductor based ferroelectric. J. Appl. Phys. 2019, 125, 114103. [Google Scholar] [CrossRef]
- Höglund, C.; Birch, J.; Alling, B.; Bareño, J.; Czigány, Z.; Persson, P.; Wingqvist, G.; Zukauskaite, A.; Hultman, L. Wurtzite structure Sc1−xAlxN solid solution films grown by reactive magnetron sputter epitaxy: Structural characterization and first-principles calculations. J. Appl. Phys. 2010, 107, 123515. [Google Scholar] [CrossRef]
- Pirro, M.; Zhao, X.; Herrera, B.; Simeoni, P.; Rinaldi, M. Effect of Substrate-RF on Sub-200 nm Al0.7Sc0.3N Thin Films. Micromachines 2022, 13, 877. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Fichtner, S.; Ghori, M.U.; Wolff, N.; Islam, M.R.; Lotnyk, A.; Kaden, D.; Niekiel, F.; Kienle, L.; Wagner, B.; et al. Growth of Highly c-Axis Oriented AlScN Films on Commercial Substrates. Micromachines 2022, 13, 783. [Google Scholar] [CrossRef] [PubMed]
- Barth, S.; Schreiber, T.; Cornelius, S.; Zywitzki, O.; Modes, T.; Bartzsch, H. High Rate Deposition of Piezoelectric AlScN Films by Reactive Magnetron Sputtering from AlSc Alloy Targets on Large Area. Micromachines 2022, 13, 1561. [Google Scholar] [CrossRef] [PubMed]
- Solonenko, D.; Žukauskaitė, A.; Pilz, J.; Moridi, M.; Risquez, S. Raman Spectroscopy and Spectral Signatures of AlScN/Al2O3. Micromachines 2022, 13, 1961. [Google Scholar] [CrossRef] [PubMed]
- Wolff, N.; Islam, M.R.; Kirste, L.; Fichtner, S.; Lofink, F.; Žukauskaitė, A.; Kienle, L. Al1−xScxN Thin Films at High Temperatures: Sc-Dependent Instability and Anomalous Thermal Expansion. Micromachines 2022, 13, 1282. [Google Scholar] [CrossRef] [PubMed]
- Drury, D.G.; Yazawa, K.; Zakutayev, A.; Hanrahan, B.; Brennecka, G.L. High-Temperature Ferroelectric Behavior of Al0.7Sc0.3N. Micromachines 2022, 13, 887. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.M.R.; Rogall, O.; Ding, A.; Nair, A.; Žukauskaitė, A.; Pupyrev, P.D.; Lomonosov, A.M.; Mayer, A. Laser Ultrasound Investigations of AlScN(0001) and AlScN(11-20) Thin Films Prepared by Magnetron Sputter Epitaxy on Sapphire Substrates. Micromachines 2022, 13, 1698. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Esteves, G.; Zheng, J.; Olsson, R.H. Vertical and Lateral Etch Survey of Ferroelectric AlN/Al1−xScxN in Aqueous KOH Solutions. Micromachines 2022, 13, 1066. [Google Scholar] [CrossRef] [PubMed]
- Nie, R.; Shamsaei, N.; Luo, Z.; Kang, X.; Wu, T. Characterization of Ferroelectric Al0.7Sc0.3N Thin Film on Pt and Mo Electrodes. Micromachines 2022, 13, 1629. [Google Scholar] [CrossRef] [PubMed]
- Beaucejour, R.; D’Agati, M.; Kalyan, K.; Olsson, R.H. Compensation of the Stress Gradient in Physical Vapor Deposited Al1−xScxN Films for Microelectromechanical Systems with Low Out-of-Plane Bending. Micromachines 2022, 13, 1169. [Google Scholar] [CrossRef] [PubMed]
- Stoeckel, C.; Meinel, K.; Melzer, M.; Žukauskaitė, A.; Zimmermann, S.; Forke, R.; Hiller, K.; Kuhn, H. Static High Voltage Actuation of Piezoelectric AlN and AlScN Based Scanning Micromirrors. Micromachines 2022, 13, 625. [Google Scholar] [CrossRef] [PubMed]
- Lozano, M.; Fernández-García, L.; López-Romero, D.; Williams, O.A.; Iriarte, G. SAW Resonators and Filters Based on Sc0.43Al0.57N on Single Crystal and Polycrystalline Diamond. Micromachines 2022, 13, 1061. [Google Scholar] [CrossRef] [PubMed]
- Rassay, S.; Mo, D.; Tabrizian, R. Dual-Mode Scandium-Aluminum Nitride Lamb-Wave Resonators Using Reconfigurable Periodic Poling. Micromachines 2022, 13, 1003. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žukauskaitė, A. Editorial for Special Issue “Piezoelectric Aluminium Scandium Nitride (AlScN) Thin Films: Material Development and Applications in Microdevices”. Micromachines 2023, 14, 1067. https://doi.org/10.3390/mi14051067
Žukauskaitė A. Editorial for Special Issue “Piezoelectric Aluminium Scandium Nitride (AlScN) Thin Films: Material Development and Applications in Microdevices”. Micromachines. 2023; 14(5):1067. https://doi.org/10.3390/mi14051067
Chicago/Turabian StyleŽukauskaitė, Agnė. 2023. "Editorial for Special Issue “Piezoelectric Aluminium Scandium Nitride (AlScN) Thin Films: Material Development and Applications in Microdevices”" Micromachines 14, no. 5: 1067. https://doi.org/10.3390/mi14051067
APA StyleŽukauskaitė, A. (2023). Editorial for Special Issue “Piezoelectric Aluminium Scandium Nitride (AlScN) Thin Films: Material Development and Applications in Microdevices”. Micromachines, 14(5), 1067. https://doi.org/10.3390/mi14051067