A High-Sensitivity MEMS Accelerometer Using a Sc0.8Al0.2N-Based Four Beam Structure
Abstract
:1. Introduction
2. Device Design and Simulation
2.1. Design
2.2. Acquisition of d31 of Sc0.2Al0.8N
2.3. Simulation
3. Fabrication and Characterization
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malayappan, B.; Lakshmi, U.P.; Rao, B.V.V.S.N.P.; Ramaswamy, K.; Pattnaik, P.K. Sensing Techniques and Interrogation Methods in Optical MEMS Accelerometers: A Review. IEEE Sens. J. 2022, 22, 6232–6246. [Google Scholar] [CrossRef]
- Macias, M.; Sierociuk, D.; Malesza, W. MEMS Accelerometer Noises Analysis Based on Triple Estimation Fractional Order Algorithm. Sensors 2022, 22, 527. [Google Scholar] [CrossRef] [PubMed]
- Ullah, P.; Ragot, V.; Zwahlen, P.; Rudolf, F. A New High Performance Sigma-Delta MEMS Accelerometer for Inertial Navigation. In Proceedings of the 2015 DGON Inertial Sensors and Systems Symposium (ISS), Karlsruhe, Germany, 22–23 September 2015; pp. 1–13. [Google Scholar] [CrossRef]
- Dong, Y.; Zwahlen, P.; Nguyen, A.-M.; Rudolf, F.; Stauffer, J.-M. High Performance Inertial Navigation Grade Sigma-Delta MEMS Accelerometer. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, Indian Wells, CA, USA, 4–6 May 2010; pp. 32–36. [Google Scholar] [CrossRef]
- Varanis, M.; Silva, A.; Mereles, A.; Pederiva, R. MEMS Accelerometers for Mechanical Vibrations Analysis: A Comprehensive Review with Applications. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 527. [Google Scholar] [CrossRef]
- Jamil, I.A.; Abedin, M.I.; Sarker, D.K.; Islam, J. Vibration Data Acquisition and Visualization System Using MEMS Accelerometer. In Proceedings of the 2014 International Conference on Electrical Engineering and Information & Communication Technology, Mirpur, Dhaka, 10–12 April 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, G.; Moutinho, C.; Magalhães, F. Continuous Dynamic Monitoring of a Large-span Arch Bridge with Wireless Nodes Based on MEMS Accelerometers. Struct. Control. Health Monit. 2022, 29, e2963. [Google Scholar] [CrossRef]
- Biswas, S.; Gogoi, A.K. Design Issues of Piezoresistive MEMS Accelerometer for an Application Specific Medical Diagnostic System. IETE Tech. Rev. 2016, 33, 11–16. [Google Scholar] [CrossRef]
- Preeti, M.; Guha, K.; Baishnab, K.L.; Sastry, A.S.C.S. Design and Analysis of a Capacitive MEMS Accelerometer as a Wearable Sensor in Identifying Low-Frequency Vibration Profiles. In Modern Techniques in Biosensors: Detection Methods and Commercial Aspects; Dutta, G., Biswas, A., Chakrabarti, A., Eds.; Studies in Systems, Decision and Control; Springer: Singapore, 2021; pp. 37–61. ISBN 9789811596124. [Google Scholar] [CrossRef]
- Oral, O.; Bilgin, S.; Ak, M.U. Evaluation of Vibration Signals Measured by 3-Axis MEMS Accelerometer on Human Face Using Wavelet Transform and Classifications. Teh. Vjesn. 2022, 29, 355–362. [Google Scholar] [CrossRef]
- Abbasi, A. Application of Piezoelectric Materials in Smart Roads and MEMS, PMPG Power Generation with Transverse Mode Thin Film PZT. Int. J. Electr. Comput. Eng. 2013, 3, 857–862. [Google Scholar] [CrossRef]
- Raaja, B.P.; Daniel, R.J.; Sumangala, K. A Simple Analytical Model for MEMS Cantilever Beam Piezoelectric Accelerometer and High Sensitivity Design for SHM (Structural Health Monitoring) Applications. Trans. Electr. Electron. Mater. 2017, 18, 78–88. [Google Scholar] [CrossRef]
- Khan, S.M.; Hanif, M.U.; Khan, A.; Hassan, M.U.; Javanmardi, A.; Ahmad, A. Damage Assessment of Reinforced Concrete Beams Using Cost-Effective MEMS Accelerometers. Structures 2022, 41, 602–618. [Google Scholar] [CrossRef]
- Chao, M.Y.; Ali, A.; Ghosh, S.; Lee, J.E.-Y. An Aluminum Nitride on Silicon Resonant MEMS Accelerometer Operating in Ambient Pressure. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 607–610. [Google Scholar] [CrossRef]
- Wu, Y.-M.; Lin, T.-L. A Test of Earthquake Early Warning System Using Low Cost Accelerometer in Hualien, Taiwan. In Early Warning for Geological Disasters: Scientific Methods and Current Practice; Wenzel, F., Zschau, J., Eds.; Advanced Technologies in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2014; pp. 253–261. ISBN 978-3-642-12233-0. [Google Scholar] [CrossRef]
- Esposito, M.; Palma, L.; Belli, A.; Sabbatini, L.; Pierleoni, P. Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review. Sensors 2022, 22, 2124. [Google Scholar] [CrossRef]
- Yang, C.; Hu, B.; Lu, L.; Wang, Z.; Liu, W.; Sun, C. A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure. Micromachines 2022, 13, 1608. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Dutta, S.; Panchal, A.; Yadav, I.; Kumar, S.; Parmar, Y.; Vanjari, S.R.K.; Jain, K.K.; Bhattacharya, D.K. Design and Fabrication of SOI Technology Based MEMS Differential Capacitive Accelerometer Structure. J. Mater. Sci. Mater. Electron. 2019, 30, 15705–15714. [Google Scholar] [CrossRef]
- Khir, M.H.M.; Qu, P.; Qu, H. A Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass. Sensors 2011, 11, 7892–7907. [Google Scholar] [CrossRef] [PubMed]
- Jency, J.G.; Sekar, M.; Sankar, A.R. Damping Analysis of a Quad Beam MEMS Piezoresistive Accelerometer. Int. J. Model. Simul. 2021, 41, 256–264. [Google Scholar] [CrossRef]
- Gesing, A.L.; Alves, F.D.P.; Paul, S.; Cordioli, J.A. On the Design of a MEMS Piezoelectric Accelerometer Coupled to the Middle Ear as an Implantable Sensor for Hearing Devices. Sci. Rep. 2018, 8, 3920. [Google Scholar] [CrossRef]
- Wang, L.-P.; Deng, K.; Zou, L.; Wolf, R.; Davis, R.J.; Trolier-McKinstry, S. Microelectromechanical Systems (MEMS) Accelerometers Using Lead Zirconate Titanate Thick Films. IEEE Electron Device Lett. 2002, 23, 182–184. [Google Scholar] [CrossRef]
- Huang, P.-S.; Ren, T.-L.; Lou, Q.-W.; Liu, J.-S.; Liu, L.-T.; Li, Z.-J. Design of a Triaxial Piezoelectric Accelerometer. Integr. Ferroelectr. 2003, 56, 1115–1122. [Google Scholar] [CrossRef]
- Gong, X.; Kuo, Y.-C.; Zhou, G.; Wu, W.-J.; Liao, W.-H. An Aerosol Deposition Based MEMS Piezoelectric Accelerometer for Low Noise Measurement. Microsyst. Nanoeng. 2023, 9, 23. [Google Scholar] [CrossRef]
- Hu, B.; Liu, Y.; Lin, B.; Wu, G.; Liu, W.; Sun, C. A Novel Trapezoidal ScAlN/AlN-Based MEMS Piezoelectric Accelerometer. IEEE Sens. J. 2021, 21, 21277–21284. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, B.; Cai, Y.; Liu, W.; Tovstopyat, A.; Sun, C. A Novel Tri-Axial Piezoelectric MEMS Accelerometer with Folded Beams. Sensors 2021, 21, 453. [Google Scholar] [CrossRef]
- Gerfers, F.; Kohlstadt, M.; Bar, H.; He, M.-Y.; Manoli, Y.; Wang, L.-P. Sub-Μg Ultra-Low-NoiseUltra-Low-Noise MEMS Accelerometers Based on CMOS-Compatible Piezoelectric AlN Thin Films. In Proceedings of the TRANSDUCERS 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 1191–1194. [Google Scholar] [CrossRef]
- Zhou, H.; Han, R.; Xu, M.; Guo, H. Study of a Piezoelectric Accelerometer Based on D33 Mode. In Proceedings of the 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Xi’an, China, 21–24 October 2016; pp. 61–65. [Google Scholar] [CrossRef]
- Shi, S.; Geng, W.; Bi, K.; Shi, Y.; Li, F.; He, J.; Chou, X. High Sensitivity MEMS Accelerometer Using PZT-Based Four L-Shaped Beam Structure. IEEE Sens. J. 2022, 22, 7627–7636. [Google Scholar] [CrossRef]
- Trolier-McKinstry, S.; Muralt, P. Thin Film Piezoelectrics for MEMS. J. Electroceram. 2004, 12, 7–17. [Google Scholar] [CrossRef]
- Ding, X.; Wu, Z.; Gao, M.; Chen, M.; Li, J.; Wu, T.; Lou, L. A High-Sensitivity Bowel Sound Electronic Monitor Based on Piezoelectric Micromachined Ultrasonic Transducers. Micromachines 2022, 13, 2221. [Google Scholar] [CrossRef]
- Akiyama, M.; Umeda, K.; Honda, A.; Nagase, T. Influence of Scandium Concentration on Power Generation Figure of Merit of Scandium Aluminum Nitride Thin Films. Appl. Phys. Lett. 2013, 102, 021915. [Google Scholar] [CrossRef]
- Tian, B.; Liu, H.; Yang, N.; Zhao, Y.; Jiang, Z. Design of a Piezoelectric Accelerometer with High Sensitivity and Low Transverse Effect. Sensors 2016, 16, 1587. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, M.S. Working Equations for Piezoelectric Actuators and Sensors. J. Microelectromech. Syst. 1999, 8, 529–533. [Google Scholar] [CrossRef]
- Kovács, Á.; Vízváry, Z. Structural Parameter Sensitivity Analysis of Cantilever- and Bridge-Type Accelerometers. Sens. Actuators A Phys. 2001, 89, 197–205. [Google Scholar] [CrossRef]
- Sun, C.; Shang, G.; Zhu, X.; Tao, Y.; Li, Z. Modeling for Piezoelectric Stacks in Series and Parallel. In Proceedings of the 2013 Third International Conference on Intelligent System Design and Engineering Applications, Hong Kong, China, 16–18 January 2013; pp. 954–957. [Google Scholar] [CrossRef]
- Zou, Q.; Tan, W.; Kim, E.S.; Loeb, G.E. Single- and Triaxis Piezoelectric-Bimorph Accelerometers. J. Microelectromech. Syst. 2008, 17, 45–57. [Google Scholar] [CrossRef]
- Kn, B.N.; Nair, D.R.; DasGupta, A. Extraction of D31 Piezoelectric Coefficient of AlN Thin Film. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Virtual, 25–29 January 2021; pp. 623–625. [Google Scholar] [CrossRef]
- Park, G.-T.; Choi, J.-J.; Ryu, J.; Fan, H.; Kim, H.-E. Measurement of Piezoelectric Coefficients of Lead Zirconate Titanate Thin Films by Strain-Monitoring Pneumatic Loading Method. Appl. Phys. Lett. 2002, 80, 4606–4608. [Google Scholar] [CrossRef]
- DeVoe, D.L.; Pisano, A.P. Modeling and Optimal Design of Piezoelectric Cantilever Microactuators. J. Microelectromech. Syst. 1997, 6, 266–270. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wang, L.; Liu, Y.; Chen, H.; Wu, Z. Process Control Monitor (PCM) for Simultaneous Determination of the Piezoelectric Coefficients D31 and D33 of AlN and AlScN Thin Films. Micromachines 2022, 13, 581. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-H.; Li, C.-Y.; Chu, S.-Y.; Tsai, C.-C.; Wang, Y.-H.; Kao, H.-Y.; Wei, C.-L.; Huang, Y.-H.; Hsiao, P.-Y.; Liu, Y.-H. The Design of Aluminum Nitride-Based Lead-Free Piezoelectric MEMS Accelerometer System. IEEE Trans. Electron Devices 2020, 67, 4399–4404. [Google Scholar] [CrossRef]
Material | PZT | ZnO | AlN |
---|---|---|---|
Dielectric constant | 300~1300 | 10.9 | 8.5~10.5 |
d33 (pC/N) | 60~233 | 5.9~12.4 | 3.4~6.4 |
d31 (pC/N) | −40 | −5.57 | −0.98~−3.18 |
tanδ (105 Vm−1) | 0.01~0.03 | 0.01~0.1 | 0.003 |
Compatible with CMOS process | No | Yes | Yes |
Parameters | Physical Descriptions | Values (μm) |
---|---|---|
L1 | Length of the whole device | 2200 |
L2 | Length of the single-cantilever beam | 350 |
LM | Length of the proof mass | 700 |
C | Length of the chamfered edge of the proof mass | 100 |
W | Width of the single-cantilever beam | 350 |
tso | Thickness of the SiO2 layer | 1 |
ts | Thickness of the Si layer | 4 |
tp | Thickness of the Sc0.2Al0.8N layer | 0.8 |
te | Thickness of the Mo layer | 0.2 |
tm | Thickness of the proof mass | 400 |
Materials | Young’s Modulus (GPa) | Poisson’s Ratio | Density (kg/m3) | Relative Permittivity |
---|---|---|---|---|
Si | 130 | 0.28 | 2329 | - |
Mo | 312 | 0.31 | 10,200 | - |
Sc0.2Al0.8N | 230 | 0.31 | 3318 | 13.7 |
SiO2 | 70 | 0.17 | 2200 | - |
Author | Chen, Z.-H. et al. [42] | Hu, B. et al. [25] | Yang, C. et al. [17] | This Work |
---|---|---|---|---|
Materials | AlN | AlN/ScAlN | AlN | ScAlN |
Sensitivity (mV/g) | 1.49 | 7.95 | 1.533 | 2.448 |
Resonance frequency (kHz) | 7.2 | 1.29 | 98 | 7.24 |
Device structure | Annular | Trapezoidal-with-corners-shaped cantilever | Polygon topological cantilevers | Trampoline |
Moving part size (mm2) | 63.62 | 14.25 | 0.723 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, L.; Wu, Z.; Gao, Y.; Lou, L. A High-Sensitivity MEMS Accelerometer Using a Sc0.8Al0.2N-Based Four Beam Structure. Micromachines 2023, 14, 1069. https://doi.org/10.3390/mi14051069
Zhang Z, Zhang L, Wu Z, Gao Y, Lou L. A High-Sensitivity MEMS Accelerometer Using a Sc0.8Al0.2N-Based Four Beam Structure. Micromachines. 2023; 14(5):1069. https://doi.org/10.3390/mi14051069
Chicago/Turabian StyleZhang, Zhenghu, Linwei Zhang, Zhipeng Wu, Yunfei Gao, and Liang Lou. 2023. "A High-Sensitivity MEMS Accelerometer Using a Sc0.8Al0.2N-Based Four Beam Structure" Micromachines 14, no. 5: 1069. https://doi.org/10.3390/mi14051069
APA StyleZhang, Z., Zhang, L., Wu, Z., Gao, Y., & Lou, L. (2023). A High-Sensitivity MEMS Accelerometer Using a Sc0.8Al0.2N-Based Four Beam Structure. Micromachines, 14(5), 1069. https://doi.org/10.3390/mi14051069