A Methodology for Enhancing SSVEP Features Using Adaptive Filtering Based on the Spatial Distribution of EEG Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. SSVEP Identify Methods
- (1)
- For data initialization:
- (2)
- For data n = 1, 2, 3, update the calculation.
2.2. Performance Test Method
2.2.1. Test Based on Public Dataset
2.2.2. Practical Experimental
3. Experiments Setup
3.1. Experimental Paradigm and Procedure
3.2. EEG Data
4. Results
4.1. Test Results Based on EEG from Public Dataset
4.2. Test Results Based on Actual Experiment
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCA | Canonical correlation analysis |
SSVEPs | Steady-state visual evoked potentials |
BCI | Brain–computer interface |
SNR | Signal-to-noise ratio |
EEG | Electroencephalographic |
RLS | Recursive least squares |
RLS-CCA | The CCA-based integrated RLS filter algorithm |
CNS | Central nervous system |
PSDA | Power spectral density analysis |
FBCCA | Filter bank canonical correlation analysis |
CNN | Convolutional neural network |
AR-SSVEP | Augmented reality steady-state visual evoked potential |
CAR | Common average reference |
THU | Tsinghua University |
JFPM | Joint frequency and phase modulation |
ICA | Independent component analysis |
LCD | Liquid crystal display |
ACC | Accuracy |
ITR | Information transfer rate |
OC | Occipital electrode channels |
non-OC | Nonoccipital electrode channels |
References
- Mcfarland, D.J.; Wolpaw, J.R. Brain-Computer Interfaces for Communication and Control. Commun. ACM 2011, 54, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef]
- Kumar, G.R.K.; Reddy, M.R. Designing a Sum of Squared Correlations Framework for Enhancing SSVEP-Based BCIs. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2044–2050. [Google Scholar] [CrossRef]
- Gao, Q.; Dou, L.; Belkacem, A.N.; Chen, C. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System. Biomed. Res. Int. 2017, 2017, 8316485. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, U.; Birbaumer, N.; Ramos Murguialday, A. Brain-computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 2016, 12, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Blankertz, B.; Dornhege, G.; Schafer, C.; Krepki, R.; Kohlmorgen, J.; Muller, K.-R.; Kunzmann, V.; Losch, F.; Curio, G. Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Regan, D. Electrical responses evoked from the human brain. Sci. Am. 1979, 241, 134–146. [Google Scholar] [CrossRef]
- Wu, W.; Sun, W.; Wu, Q.J.; Yang, Y.; Zhang, H.; Zheng, W.L.; Lu, B.L. Multimodal Vigilance Estimation Using Deep Learning. IEEE Trans. Cybern. 2022, 52, 3097–3110. [Google Scholar] [CrossRef]
- Tan, W.; Xu, Y.; Liu, P.; Liu, C.; Li, Y.; Du, Y.; Chen, C.; Wang, Y.; Zhang, Y. A method of VR-EEG scene cognitive rehabilitation training. Health Inf. Sci. Syst. 2021, 9, 4. [Google Scholar] [CrossRef]
- Hong, J.; Qin, X. Signal Processing Algorithms for SSVEP-based Brain Computer Interface: State-of-the-art and Recent Developments. J. Intell. Fuzzy Syst. 2021, 40, 10559–10573. [Google Scholar] [CrossRef]
- Ojha, M.K.; Mukul, M.K. Detection of Target Frequency from SSVEP Signal Using Empirical Mode Decomposition for SSVEP Based BCI Inference System. Wirel. Pers. Commun. 2020, 116, 777–789. [Google Scholar] [CrossRef]
- Xu, M.; Xiao, X.; Wang, Y.; Qi, H.; Jung, T.P.; Ming, D. A Brain–Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli. IEEE Trans. Biomed. Eng. 2018, 65, 1166–1175. [Google Scholar] [PubMed]
- Xiao, X.; Xu, M.; Han, J.; Yin, E.; Liu, S.; Zhang, X.; Jung, T.-P.; Ming, D. Enhancement for P300-speller classification using multi-window discriminative canonical pattern matching. J. Neural Eng. 2021, 18, 46–79. [Google Scholar] [CrossRef]
- Bi, L.; Jie, K.; Fan, X.; Li, Y. A SSVEP brain-computer interface with the hybrid stimuli of SSVEP and P300. In Proceedings of the 2013 ICME International Conference on Complex Medical Engineering, Beijing, China, 25–28 May 2013; pp. 211–214. [Google Scholar]
- Xu, M.; Qi, H.; Ma, L.; Sun, C.; Zhang, L.; Wan, B.; Yin, T.; Ming, D. Channel Selection Based on Phase Measurement in P300-Based Brain-Computer Interface. PLoS ONE 2013, 8, e60608. [Google Scholar] [CrossRef] [PubMed]
- Phothisonothai, M.; Watanabe, K. Optimal Fractal Feature and Neural Network: EEG Based BCI Applications. In Brain-Computer Interface Systems–Recent Progress and Future Prospects; Books on Demand: Norderstedt, Germany, 2013. [Google Scholar]
- Wu, W.; Wu, Q.J.; Sun, W.; Yang, Y.; Yuan, X.; Zheng, W.L.; Lu, B.L. A Regression Method With Subnetwork Neurons for Vigilance Estimation Using EOG and EEG. IEEE Trans. Cogn. Dev. Syst. 2021, 13, 209–222. [Google Scholar] [CrossRef]
- Liu, W.; Qiu, J.L.; Zheng, W.L.; Lu, B.L. Comparing Recognition Performance and Robustness of Multimodal Deep Learning Models for Multimodal Emotion Recognition. IEEE Trans. Cogn. Dev. Syst. 2022, 14, 715–729. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, M.; Xiao, X.; Chen, L.; Gu, X.; Ming, D. A review of researches on electroencephalogram decoding algorithms in brain-computer interface. J. Biomed. Eng. 2019, 36, 856–861. [Google Scholar]
- Dong, E.; Li, C.; Li, L.; Du, S.; Belkacem, A.N.; Chen, C. Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces. Med. Biol. Eng. Comput. 2017, 55, 1809–1818. [Google Scholar] [CrossRef]
- Waytowich, N.; Lawhern, V.; Garcia, J.; Cummings, J.; Faller, J.; Sajda, P.; Vettel, J.M. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials. J. Neural. Eng. 2018, 15, 066031. [Google Scholar] [CrossRef]
- İşcan, Z.; Nikulin, V.V. Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI)performance under different perturbations. PLoS ONE 2018, 13, e0191673. [Google Scholar] [CrossRef]
- Castillo, J.; Müller, S.; Caicedo, E.; Bastos, T. Feature extraction techniques based on power spectrum for a SSVEP-BCI. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014; pp. 1051–1055. [Google Scholar]
- Bisht, A.; Srivastava, S.; Purushothaman, G. A new 360° rotating type stimuli for improved SSVEP based brain computer interface. Biomed. Signal Process. Control 2020, 57, 101778. [Google Scholar] [CrossRef]
- Muirhead, R.J.; Anderson, T.W. An Introduction to Multivariate Statistical Analysis; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Lin, Z.; Zhang, C.; Wu, W.; Gao, X. Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs. IEEE Trans. Biomed. Eng. 2006, 53, 2610–2614. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Gao, S.; Jung, T.P.; Gao, X. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J. Neural Eng. 2015, 12, 046008. [Google Scholar] [CrossRef]
- Zhao, X.; Du, Y.; Zhang, R. A CNN-based multi-target fast classification method for AR-SSVEP. Comput. Biol. Med. 2021, 141, 105042. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Shen, G.; Liu, J. Wearable Multifunction Sensor for the Detection of Forehead EEG Signal and Sweat Rate on Skin Simultaneously. IEEE Sens. J. 2020, 20, 10393–10404. [Google Scholar] [CrossRef]
- Gao, K.; Yang, H.J.; Liao, L.L.; Jiang, C.P.; Zhao, N.; Wang, X.L.; Li, X.Y.; Chen, X.; Yang, B.; Liu, J. A Novel Bristle-Shaped Semi-Dry Electrode with Low Contact Impedance and Ease of Use Features for EEG Signal Measurements. IEEE Trans. Biomed. Eng. 2020, 67, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Javier, K.V. Efficient Low-Frequency SSVEP Detection with Wearable EEG Using Normalized Canonical Correlation Analysis. Sensors 2022, 22, 9803. [Google Scholar]
- Yuan, X.; Sun, Q.; Zhang, L.; Wang, H. Enhancing detection of SSVEP-based BCIs via a novel CCA-based method. Biomed. Signal Process. Control 2022, 74, 103482. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, G.; Han, C.; Tian, P.; Zhang, K.; Liang, R.; Jia, Y.; Yan, W.; Du, C.; Zhang, S. Enhancing Performance of SSVEP-Based Visual Acuity via Spatial Filtering. Front. Neurosci. 2021, 15, 716051. [Google Scholar] [CrossRef]
- Wittevrongel, B.; Khachatryan, E.; Fahimi Hnazaee, M.; Camarrone, F.; Carrette, E.; De Taeye, L.; Meurs, A.; Boon, P.; Van Roost, D.; Van Hulle, M.M. Decoding Steady-State Visual Evoked Potentials From Electrocorticography. Front. Neuroinform. 2018, 12, 65. [Google Scholar] [CrossRef]
- Ludwig, K.A.; Miriani, R.M.; Langhals, N.B.; Joseph, M.D.; Anderson, D.J.; Kipke, D.R. Using a common average reference to improve cortical neuron recordings from microelectrode arrays. J. Neurophysiol. 2009, 101, 1679–1689. [Google Scholar] [CrossRef]
- Haykin, S. Adaptive Filter Theory, 5th ed.; Publishing House of Electronics Industrial: Beijing, China, 2016; Volume 5, pp. 320–334. ISBN 978-7-121-25052-1. [Google Scholar]
- Rejer, I.; Cieszyński, Ł. Independent component analysis for a low-channel SSVEP-BCI. Pattern Anal. Appl. 2018, 22, 47–62. [Google Scholar] [CrossRef]
- Phinzi, K.; Abriha, D.; Szabó, S. Classification Efficacy Using K-Fold Cross-Validation and Bootstrapping Resampling Techniques on the Example of Mapping Complex Gully Systems. Remote Sens. 2021, 13, 2980. [Google Scholar] [CrossRef]
- Vakharia, V.; Castelli, I.E.; Bhavsar, K.; Solanki, A. Bandgap prediction of metal halide perovskites using regression machine learning models. Phys. Lett. A 2022, 422, 127800. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Gao, X.; Gao, S. A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1746–1752. [Google Scholar] [CrossRef]
- Huang, H.-P.; Liu, Y.-H.; Wang, C.-P.; Huang, T.-H. Automatic Artifact Removal in EEG Using Independent Component Analysis and One-Class Classification Strategy. J. Neurosci. Neuroeng. 2013, 2, 73–78. [Google Scholar] [CrossRef]
- Cheng, M.; Gao, X.; Gao, S.; Xu, D. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans. Biomed. Eng. 2002, 49, 1181–1186. [Google Scholar]
- Ojha, M.K.; Mukul, M.K. A Novel Approach Based on EMD to improve the Performance of SSVEP Based BCI System. Wirel. Pers. Commun. 2021, 118, 2455–2467. [Google Scholar] [CrossRef]
- Es, A.; Yky, B.; Yi, C. Investigating the Effect of Flickering Frequency Pair and Mother Wavelet Selection in Steady-State Visually-Evoked Potentials on Two-Command Brain-Computer Interfaces. IRBM 2022, 43, 594–603. [Google Scholar]
Algorithm | ITR and Accuracy (ACC) | EEG Channel | ||
---|---|---|---|---|
9 OC Channels | ||||
5 Non-OC | 30 Non-OC | 55 Non-OC | ||
CCA | ACC | 66.88% | 68.41% | 69.91% |
ITR | 83.19 | 84.23 | 84.87 | |
RLS-CCA | ACC | 93.94% | 94.37% | 94.41% |
ITR | 139.85 | 142.22 | 143.35 |
Algorithm | ITR and ACC | 55 Non-OC Channels | 5 Non-OC | |
---|---|---|---|---|
3 OC | 6 OC | 3 OC | ||
CCA | ACC | 55.33% | 71.34% | 56.97% |
ITR | 59.40 | 87.31 | 60.53 | |
RLS-CCA | ACC | 81.67% | 94.33% | 82.14% |
ITR | 108.87 | 141.96 | 110.67 |
Algorithm | ITR | ACC |
---|---|---|
Standard-CCA | 105.50 | 65.20% |
FBCCA | 140.50 | 80.50% |
RLS-CCA | 143.35 | 94.41% |
Algorithm | ITR and Accuracy (ACC) | EEG Channel | ||
---|---|---|---|---|
9 OC Channels | ||||
5 Non-OC | 15 Non-OC | 23 Non-OC | ||
CCA | ACC | 20.57% | 23.82% | 26.75 |
ITR | 0.33 | 0.43 | 1.01 | |
RLS-CCA | ACC | 96.59% | 97.34% | 100% |
ITR | 57.57 | 60.14 | 61.98 |
Algorithm | ITR and Accuracy (ACC) | 23 Non-OC Channels | 5 Non-OC | |
---|---|---|---|---|
3 OC | 6 OC | 3 OC | ||
CCA | ACC | 11.87% | 19.45% | 12.54% |
ITR | 0 | 0.23 | 0 | |
RLS-CCA | ACC | 91.20% | 100% | 91.23% |
ITR | 47.17 | 61.95 | 48.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Ji, B.; Shao, D.; Chen, W.; Gao, K. A Methodology for Enhancing SSVEP Features Using Adaptive Filtering Based on the Spatial Distribution of EEG Signals. Micromachines 2023, 14, 976. https://doi.org/10.3390/mi14050976
Wang S, Ji B, Shao D, Chen W, Gao K. A Methodology for Enhancing SSVEP Features Using Adaptive Filtering Based on the Spatial Distribution of EEG Signals. Micromachines. 2023; 14(5):976. https://doi.org/10.3390/mi14050976
Chicago/Turabian StyleWang, Shengyu, Bowen Ji, Dian Shao, Wanru Chen, and Kunpeng Gao. 2023. "A Methodology for Enhancing SSVEP Features Using Adaptive Filtering Based on the Spatial Distribution of EEG Signals" Micromachines 14, no. 5: 976. https://doi.org/10.3390/mi14050976
APA StyleWang, S., Ji, B., Shao, D., Chen, W., & Gao, K. (2023). A Methodology for Enhancing SSVEP Features Using Adaptive Filtering Based on the Spatial Distribution of EEG Signals. Micromachines, 14(5), 976. https://doi.org/10.3390/mi14050976