Microfluidic Distillation System for Separation of Propionic Acid in Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Micro-Distillation Chip Fabrication
2.2. Distillation Module
2.3. Experimental Details
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natrus, L.; Osadchuk, Y.; Lisakovska, O.; Roch, T.; Babel, N.; Klys, Y.; Labudzynskyi, D.; Chaikovsky, Y. Regulation of the apoptosis/autophagy switch by propionic acid in ventromedial hypothalamus of rats with type 2 diabetes mellitus. Heliyon 2022, 8, e11529. [Google Scholar] [CrossRef]
- Neuffer, J.; González-Domínguez, R.; Lefèvre-Arbogast, S.; Low, D.Y.; Driollet, B.; Helmer, C.; Du Preez, A.; de Lucia, C.; Ruigrok, S.R.; Altendorfer, B. Exploration of the Gut–Brain Axis through Metabolomics Identifies Serum Propionic Acid Associated with Higher Cognitive Decline in Older Persons. Nutrients 2022, 14, 4688. [Google Scholar] [CrossRef]
- Sa’ad, H.; Peppelenbosch, M.P.; Roelofsen, H.; Vonk, R.J.; Venema, K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2010, 1801, 1175–1183. [Google Scholar]
- El-Ansary, A.K.; Bacha, A.B.; Kotb, M. Etiology of autistic features: The persisting neurotoxic effects of propionic acid. J. Neuroinflammation 2012, 9, 1–14. [Google Scholar] [CrossRef]
- MacFabe, D.F.; Cain, N.E.; Boon, F.; Ossenkopp, K.-P.; Cain, D.P. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav. Brain Res. 2011, 217, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Hu, Y.; Chen, X.; Li, G.; Zhong, Q.; He, X.; Xu, W. Correlation between bacterial community succession and propionic acid during gray sufu fermentation. Food Chem. 2021, 353, 129447. [Google Scholar] [CrossRef]
- Kim, D.B.; Jang, G.J.; Yoo, M.; Lee, G.; Yun, S.S.; Lim, H.S.; Kim, M.; Lee, S. Sorbic, benzoic and propionic acids in fishery products: A survey of the South Korean market. Food Addit. Contam. Part A 2018, 35, 1071–1077. [Google Scholar] [CrossRef]
- Tungkijanansin, N.; Alahmad, W.; Nhujak, T.; Varanusupakul, P. Simultaneous determination of benzoic acid, sorbic acid, and propionic acid in fermented food by headspace solid-phase microextraction followed by GC-FID. Food Chem. 2020, 329, 127161. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.M.; Shih, M.K.; Hsieh, C.W.; Ju, W.J.; Tain, Y.L.; Cheng, K.C.; Hsu, J.H.; Chen, Y.W.; Hou, C.Y. Design of an Integrated Microfluidic Paper-Based Chip and Inspection Machine for the Detection of Mercury in Food with Silver Nanoparticles. Biosensors 2021, 11, 491. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Wang, Q. Review of microchip analytical methods for the determination of pathogenic Escherichia coli. Talanta 2021, 232, 122410. [Google Scholar] [CrossRef] [PubMed]
- Thorne, N.; Flores-Olazo, L.; Egoávil-Espejo, R.; Vela, E.A.; Noel, J.; Valdivia-Silva, J.; van Noort, D. Systematic Review: Microfluidics and Plasmodium. Micromachines 2021, 12, 1245. [Google Scholar] [CrossRef]
- Tseng, C.C.; Chen, S.J.; Lu, S.Y.; Ko, C.H.; Wang, J.M.; Fu, L.M.; Liu, Y.H. Novel sliding hybrid microchip detection system for determination of whole blood phosphorus concentration. Chem. Eng. J. 2021, 419, 129592. [Google Scholar] [CrossRef]
- Cerqueira, L.; Miranda, J.M. Editorial for the Special Issue on Microfluidics and Lab-on-a-Chip Applications for Biosensing. Micromachines 2022, 13, 2060. [Google Scholar] [CrossRef] [PubMed]
- Tai, W.C.; Chang, Y.C.; Chou, D.; Fu, L.M. Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples—A Review. Biosensors 2021, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Aziz, A.u.R.; Wu, B.; Lv, Y.; Zhang, H.; Li, N.; Liu, B.; Zhang, Z. The Road to Unconventional Detections: Paper-Based Microfluidic Chips. Micromachines 2022, 13, 1835. [Google Scholar] [CrossRef]
- Chen, H.; Liu, C.C.; Lu, S.Y.; Chen, S.; Sheu, F.; Fu, L.M. Rapid Microfluidic Analysis Detection System for Sodium Dehydroacetate in Foods. Chem. Eng. J. 2022, 427, 131530. [Google Scholar] [CrossRef]
- Lin, Y.S.; Huang, S.T.; Hsu, S.F.; Tang, K.Y.; Yen, T.J.; Yao, D.J. Terahertz Combined with Metamaterial Microfluidic Chip for Troponin Antigen Detection. Micromachines 2022, 13, 2257. [Google Scholar] [CrossRef]
- Tseng, C.C.; Ko, C.H.; Lu, S.Y.; Yang, C.E.; Fu, L.M.; Li, C.Y. Rapid electrochemical-biosensor microchip platform for determination of microalbuminuria in CKD patients. Anal. Chim. Acta 2021, 1146, 70–76. [Google Scholar] [CrossRef]
- Yin, B.; Wan, X.; Sohan, A.M.F.; Lin, X. Microfluidics-based POCT for SARS-CoV-2 diagnostics. Micromachines 2022, 13, 1238. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Lu, Y.; Luo, X.; Huang, Y.; Xie, T.; Pilarsky, C.; Dang, Y.; Zhang, J. Microfluidic Technology for the Isolation and Analysis of Exosomes. Micromachines 2022, 13, 1571. [Google Scholar] [CrossRef]
- Lin, Y.S.; Huang, S.T.; Hsu, S.F.S.; Tang, K.Y.; Yen, T.J.; Yao, D.J. Sensitivity Enhancement and Probiotic Detection of Microfluidic Chips Based on Terahertz Radiation Combined with Metamaterial Technology. Micromachines 2022, 13, 904. [Google Scholar] [CrossRef]
- Lin, L.; Quoc Pho, H.; Zong, L.; Li, S.; Pourali, N.; Rebrov, E.; Nghiep Tran, N.; Ostrikov, K.; Hessel, V. Microfluidic plasmas: Novel technique for chemistry and chemical engineering. Chem. Eng. J. 2021, 417, 129355. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, J.; Chen, C.; Wang, J.; Liu, G.; Nandakumar, K.; Li, Y.; Wang, L. Microfluidic Applications in Drug Development: Fabrication of Drug Carriers and Drug Toxicity Screening. Micromachines 2022, 13, 200. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Chircov, C.; Birca, A.C.; Grumezescu, A.M. Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview. Nanomaterials 2021, 11, 864. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Tseng, C.C.; Huang, K.H.; Chang, Y.C.; Fu, L.M. Microfluidic Sliding Paper-Based Device for Point-of-Care Determination of Albumin-to-Creatine Ratio in Human Urine. Biosensors 2022, 12, 496. [Google Scholar] [CrossRef]
- Kaaliveetil, S.; Yang, J.; Alssaidy, S.; Li, Z.; Cheng, Y.H.; Menon, N.H.; Chande, C.; Basuray, S. Microfluidic Gas Sensors: Detection Principle and Applications. Micromachines 2022, 13, 1716. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Malekanfard, A.; Beladi-Behbahani, S.; Zu, W.; Kale, A.; Tzeng, T.R.; Wang, Y.N.; Xuan, X. Passive dielectrophoretic focusing of particles and cells in ratchet microchannels. Micromachines 2020, 11, 451. [Google Scholar] [CrossRef]
- Ng, H.Y.; Lee, W.C.; Kung, C.T.; Li, L.C.; Lee, C.T.; Fu, L.M. Recent advances in microfluidic devices for contamination detection and quality inspection of milk. Micromachines 2021, 12, 558. [Google Scholar] [CrossRef]
- Giordano, G.F.; Vieira, L.C.S.; Gobbi, A.L.; Kubota, L.T.; Lima, R.S. Gravity-assisted distillation on a chip: Fabrication, characterization, and applications. Anal. Chim. Acta 2018, 1033, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Yokoyama, T.; Ishikawa, A. Refinement of the Micro-Distillation Technique for Isotopic Analysis of Geological Samples with pg-Level Osmium Contents. Geostand. Geoanal. Res. 2019, 43, 231–243. [Google Scholar] [CrossRef]
- Brasil, M.A.; Gomes, L.H.; Kamogawa, M.Y.; Basso, L.C. Ethanol determination in fermented sugarcane substrates by a diffusive micro-distillation device. J. Microbiol. Methods 2020, 178, 106085. [Google Scholar] [CrossRef]
- Yang, R.J.; Liu, C.C.; Wang, Y.N.; Hou, H.H.; Fu, L.M. A comprehensive review of micro-distillation methods. Chem. Eng. J. 2017, 313, 1509–1520. [Google Scholar] [CrossRef]
- Hsu, S.Y.; Liu, C.C.; Yang, C.E.; Fu, L.M. Multifunctional microchip-based distillation apparatus I-Steam distillation for formaldehyde detection. Anal. Chim. Acta 2019, 1062, 94–101. [Google Scholar] [CrossRef]
- Dayao, L.A.N.; Liu, C.C.; Hsu, S.Y.; Tayo, L.L.; Ju, W.J.; Fu, L.M. Multifunctional microchip-based distillation apparatus II-Aerated distillation for sulfur dioxide detection. Anal. Chim. Acta 2019, 1071, 44–52. [Google Scholar] [CrossRef]
- Tang, Y.; Zheng, Y.; Tian, J.; Sun, J. Process Intensification of Chemical Exchange Method for Boron Isotope Separation Using Micro-Channel Distillation Technology. Micromachines 2021, 12, 1222. [Google Scholar] [CrossRef]
- Peters, J.J.; Almeida, M.I.G.; Šraj, L.O.C.; McKelvie, I.D.; Kolev, S.D. Development of a micro-distillation microfluidic paper-based analytical device as a screening tool for total ammonia monitoring in freshwaters. Anal. Chim. Acta 2019, 1079, 120–128. [Google Scholar] [CrossRef]
- Wende, M.; Fischer, F.; Kenig, E.Y. Numerical and Experimental Investigation of Zero-Gravity Distillation Units. Chem. Eng. Trans. 2021, 88, 697–702. [Google Scholar]
- Stanisch, B.; Wellsandt, T.; Strube, J. Development of micro separation technology modules. Part 2: Distillation. Chem. Ing. Tech. 2015, 87, 1207–1214. [Google Scholar] [CrossRef]
- Singh, S.; Mohan, R.; Gosu, V.; Kumar, U.A. Process Intensification of Propionic Acid Extraction and its Recovery by Distillation in Microchannel. Chem. Eng. Process. Process Intensif. 2020, 157, 108150. [Google Scholar] [CrossRef]
- Singh, S.; Gosu, V.; Upadhyaya, S.; Kumar, U.A. Process Intensification of Propionic Acid Separation–Effect of Channel Geometry on Microchannel Distillation. Chem. Eng. Process. Process Intensif. 2021, 169, 108599. [Google Scholar] [CrossRef]
- Tokuoka, Y.; Kondo, K.; Nakaigawa, N.; Ishida, T. Development of a Microfluidic Device to Form a Long Chemical Gradient in a Tissue from Both Ends with an Analysis of Its Appearance and Content. Micromachines 2021, 12, 1482. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Liu, J.; Mao, Q.; Chang, X.; Song, Y.; Yuan, Z.; You, Z.; Zhao, X.; Tian, J.; Yan, D. Exploration of photocatalytic chlorination combined simplified distillation to produce electronic grade high-purity trichlorosilane via microchannel reactor experiments, multiphase-flow simulation, ReaxFF MD, and DFT. Chem. Eng. J. 2022, 450, 138020. [Google Scholar] [CrossRef]
- Wu, Y.T.; Yang, C.E.; Ko, C.H.; Wang, Y.N.; Liu, C.C.; Fu, L.M. Microfluidic detection platform with integrated micro-spectrometer system. Chem. Eng. J. 2020, 393, 124700. [Google Scholar] [CrossRef]
- Liu, C.C.; Wang, Y.N.; Fu, L.M.; Chieh, C. Micro-distillation system for formaldehyde concentration detection. Chem. Eng. J. 2016, 304, 419–425. [Google Scholar] [CrossRef]
- Wang, Y.N.; Liu, C.C.; Yang, R.J.; Ju, W.J.; Fu, L.M. Microfluidic Distillation Chip for Methanol Concentration Detection. Anal. Chem. Acta 2016, 912, 97–104. [Google Scholar] [CrossRef]
- Yun, S.S.; Kim, J.; Lee, S.J.; So, J.S.; Lee, M.Y.; Lee, G.; Lim, H.S.; Kim, M. Naturally occurring benzoic, sorbic, and propionic acid in vegetables. Food Addit. Contam. Part B 2019, 12, 167–174. [Google Scholar] [CrossRef]
- Ferreira, F.N.; Carneiro, M.C.; Vaitsman, D.S.; Pontes, F.V.; Monteiro, M.I.C.; da Silva, L.I.D.; Neto, A.A. Matrix-elimination with steam distillation for determination of short-chain fatty acids in hypersaline waters from pre-salt layer by ion-exclusion chromatography. J. Chromatogr. A 2012, 1223, 79–83. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Li, L.; Wang, Y.; Tian, Q.; Liu, Y. Determination of propionic acid and its salts in food by gas chromatography. Chin. J. Chromatogr. 2019, 37, 227–232. [Google Scholar] [CrossRef]
- Oh, C.H.; Jeong, H.S. Quantitation of propionic acid in emmental cheese products by direct solvent extraction. Food Sci. Biotechnol. 2022, 31, 183–190. [Google Scholar] [CrossRef]
- Ko, C.H.; Liu, C.C.; Chen, K.H.; Sheu, F.; Fu, L.M.; Chen, S.J. Microfluidic colorimetric analysis system for sodium benzoate detection in foods. Food Chem. 2021, 345, 128773. [Google Scholar] [CrossRef] [PubMed]
Sample No. | Micro-Distillation (ppm) | NPUST CAAPIC Detection (ppm) | Accuracy (%) |
---|---|---|---|
1 Maple Sugar Cookies | 791 ± 8 | 800 | 98.9% |
2 Milk cookies | 92 ± 2 | N. D. | — |
3 Peanut cookies | 1091 ± 6 | 1100 | 99.2% |
4 Cookies | N. D. | N. D. | — |
5 Chocolate cookies | 683 ± 8 | 700 | 97.5% |
6 Apple bread | 505 ± 3 | 500 | 99% |
7 Beard | 1188 ± 5 | 1200 | 99% |
8 Butter bread | N. D. | N. D. | — |
9 Toast | N. D. | N. D. | — |
10 whole wheat bread | 581 ± 7 | 600 | 96.8% |
Refs. | Target | Sample Pretreatment | Separation Method | Detection Method | Limit of Detection | Time | Sample Volume |
---|---|---|---|---|---|---|---|
[7] | PA, BA, SA | HS-SPME | GC | MS | 0.1 mg/L | 65 min | 20 g |
[31] | PA | Microchannel distillation | Microchannel | Acid-base titration | - | 1 h | - |
[43] | SA, BA, SO2 | Micro-distillation | Microchannel | Micro-spectrometer | 200 mg/L | 15 min | 0.1 mL |
[46] | PA, BA, SA | Solvent extraction | GC | MS | 29.9 mg/L | 49 min | 100 g |
[47] | PA, AA, FA, BuA | Traditional steam distillation | - | IEC | 0.3 mg/L | 31 min | 50 mL |
[48] | PA | Degrease and direct extraction | GC | FID | 3 mg/L | 24 min | 2 g |
[49] | PA | Direct extraction | GC | FID | 120 mg/L | 100 min | 5 g |
[50] | SBA | Micro-distillation | Microchannel | Colorimetric | 50 mg/L | 12 min | 0.5 g |
TFDA official method | PA | Traditional steam distillation | HPLC | PDA | - | 60 min | 25 g |
This study | PA | Micro-distillation | HPLC | PDA | 50 mg/L | 15 min | 1 mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.-Y.; Liu, C.-C.; Huang, K.-H.; Yu, C.-X.; Fu, L.-M. Microfluidic Distillation System for Separation of Propionic Acid in Foods. Micromachines 2023, 14, 1133. https://doi.org/10.3390/mi14061133
Lu S-Y, Liu C-C, Huang K-H, Yu C-X, Fu L-M. Microfluidic Distillation System for Separation of Propionic Acid in Foods. Micromachines. 2023; 14(6):1133. https://doi.org/10.3390/mi14061133
Chicago/Turabian StyleLu, Song-Yu, Chan-Chiung Liu, Kuan-Hsun Huang, Cheng-Xue Yu, and Lung-Ming Fu. 2023. "Microfluidic Distillation System for Separation of Propionic Acid in Foods" Micromachines 14, no. 6: 1133. https://doi.org/10.3390/mi14061133
APA StyleLu, S. -Y., Liu, C. -C., Huang, K. -H., Yu, C. -X., & Fu, L. -M. (2023). Microfluidic Distillation System for Separation of Propionic Acid in Foods. Micromachines, 14(6), 1133. https://doi.org/10.3390/mi14061133