Exploiting Interfacial Effects between Collapsing Bubbles and Nanocarbon/TiN Substrates for the Green Synthesis of Self-Organized Noble Metal and Nanoalloy Nanoparticles
Abstract
:1. Introduction
2. Experimental Section
2.1. Supported Porous Nanocarbon and TiN Film Fabrication
2.2. Surface Modification of Supported Porous Nanocarbon and TiN Films
2.3. Characterization
3. Results
Structure and Morphology
- (a)
- Supported Au and nanoalloy NPs by sonochemistry.
- (b) supported NMNPs and nanoalloys via a Leidenfrost-mediated reduction of metal ions
4. Discussion
5. Application to Electrocatalysis
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porcel, E.; Liehn, S.; Remita, H.; Usami, N.; Kobayashi, K.; Furusawa, Y.; Le Sech, C.; Lacombe, S. Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology 2010, 21, 085103. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, M. Nanomaterials in pollution trace detection and environmental improvement. Nano Today 2010, 5, 128. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, C.; Liu, W.; Chen, R.; Jiang, X. Tuning the Composition of AuPt Bimetallic Nanoparticles for Antibacterial Application. Angew. Chem. Int. Ed. 2014, 53, 8127. [Google Scholar]
- Guo, S.; Wang, E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011, 6, 240. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Ramaraj, R. Gold nanoparticle-based sensing platform of hydrazine, sulfite, and nitrite for food safety and environmental monitoring. J. Anal. Sci. Technol. 2017, 8, 14. [Google Scholar] [CrossRef]
- Niu, W.; Xu, G. Crystallographic control of noble metal nanocrystals. Nano Today 2011, 6, 265. [Google Scholar] [CrossRef]
- Chu, Y.; Schonbrun, E.; Yang, T.; Crozier, K.B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 2008, 93, 181108. [Google Scholar] [CrossRef]
- Habouti, S.; Mátéfi-Tempfli, M.; Solterbeck, C.-H.; Es-Souni, M.; Mátéfi-Tempfli, S.; Es-Souni, M. On-substrate, self-standing Au-nanorod arrays showing morphology controlled properties. Nano Today 2011, 6, 12. [Google Scholar] [CrossRef]
- Yu, W.; Porosoff, M.D.; Chen, J.G. Review of Pt-Based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts. Chem. Rev. 2012, 112, 5780–5817. [Google Scholar] [CrossRef]
- Laghrissi, A.; Es-Souni, M. Porous PtPd alloy nanotubes: Towards high performance electrocatalysts with low Pt-loading. Catal. Sci. Technol. 2019, 9, 4355. [Google Scholar] [CrossRef]
- Sneed, B.T.; Young, A.P.; Golden, M.C.; Mao, S.; Jiang, Y.; Wang, Y.; Tsung, C.-K. Shaped Pd-Ni-Pt Core-Sandwich-Shell Nanoparticles: Influence of Ni Sandwich Layers on Catalytic Electrooxidation. ACS Nano 2014, 8, 7239–7250. [Google Scholar] [CrossRef]
- Gates, B.D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C.G.; Whitesides, G.M. New Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chem. Rev. 2005, 105, 1171. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Thubagere, A.; Premasiri, W.R.; Ziegler, L.D.; Negro, L.D.; Reinhard, B.M. Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays. ACS Nano 2009, 3, 1190. [Google Scholar] [CrossRef] [PubMed]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591. [Google Scholar] [CrossRef]
- Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 2009, 8, 781. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.R.; Osberg, K.D.; Macfarlane, R.J.; Langille, M.R.; Mirkin, C.A. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem. Rev. 2011, 111, 3736. [Google Scholar] [CrossRef] [PubMed]
- Hulteen, J.C.; Martin, C.R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 1997, 7, 1075. [Google Scholar] [CrossRef]
- Habouti, S.; Mátéfi-Tempfli, M.; Solterbeck, C.-H.; Es-Souni, M.; Mátéfi-Tempfli, S.; Es-Souni, M. Self-standing corrugated Ag and Au-nanorods for plasmonic applications. J. Mater. Chem. 2011, 21, 6269. [Google Scholar] [CrossRef]
- Dar, F.; Moonoosawmy, K.; Es-Souni, M. Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Res. Lett. 2013, 8, 363. [Google Scholar] [CrossRef] [PubMed]
- Es-Souni, M. Transparent, Scratch Resistant Film with Antifouling Properties and Preparation Method Thereof. German Patent Nr. 102017101978, 2 February 2023. [Google Scholar]
- Wassel, E.; Es-Souni, M.; Laghrissi, A.; Roth, A.; Dietze, M.; Es-Souni, M. Scratch resistant non-fouling surfaces via grafting non-fouling polymers on the pore walls of supported porous oxide structures. Mater. Des. 2019, 163, 107542. [Google Scholar] [CrossRef]
- Kakade, B.A.; Tamaki, T.; Ohashi, H.; Yamaguchi, T. Highly Active Bimetallic PdPt and CoPt Nanocrystals for Methanol Electro-oxidation. J. Phys. Chem. C 2012, 116, 7464. [Google Scholar] [CrossRef]
- Zhang, H.; Jinb, M.; Xia, Y. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035–8049. [Google Scholar] [CrossRef]
- Habrioux, A.; Vogel, W.; Guinel, M.; Guetaz, L.; Servat, K.; Kokoh, B.; Alonso-Vante, N. Structural and electrochemical studies of Au–Pt nanoalloys. Phys. Chem. Chem. Phys. 2009, 11, 3573. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X.T.; Wang, H. Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity. Chem. Rev. 2015, 115, 3433. [Google Scholar] [CrossRef] [PubMed]
- Es-Souni, M. Antibacterial Coating of a Medical Implant and Process Thereof. German Patent Nr. DE102018115709B4, 26 March 2020. [Google Scholar]
- Es-Souni, M.; Schopf, D.; Solterbeck, C.-H.; Dietze, M. Novel Approach to the Processing of Meso- Macroporous Thin Films of Graphite and in situ Graphite-Noble Metal Nanocomposites. RSC Adv. 2014, 4, 17748–17752. [Google Scholar] [CrossRef]
- Schopf, D.; Es-Souni, M. Thin Film Nanocarbon Composites for Supercapacitor Applications. Carbon 2017, 115, 449–459. [Google Scholar] [CrossRef]
- Laghrissi, A.; Solterbeck, C.-H.; Schopf, D.; Es-Souni, M. Noble metal NPs and nanoalloys by sonochemistry directly processed on nanocarbon and TiN substrates from aqueous solutions. Ultrason. Sonochemistry 2018, 51, 138. [Google Scholar] [CrossRef]
- Okitsu, K.; Ashokkumar, M.; Grieser, F. Sonochemical Synthesis of gold nanoparticles: Effects of ultrasound frequency. J. Phys. Chem. B Lett. 2005, 109, 20673. [Google Scholar] [CrossRef]
- Ataee-Esfahani, H.; Wang, L.; Nemoto, Y.; Yamauchi, Y. Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem. Mater. 2010, 22, 6310. [Google Scholar] [CrossRef]
- Bratescu, M.A.; Cho, S.-P.; Takai, N.; Saito, T.N. Size-Controlled Gold Nanoparticles Synthesized in Solution Plasma. J. Phys. Chem. C 2011, 115, 24569–24576. [Google Scholar] [CrossRef]
- Luyten, J.; De Keyzer, J.; Wollants, P.; Creemers, C. Construction of modified embedded atom method potentials for the study of the bulk phase behaviour in binary Pt-Rh, Pt-Pd, Pd-Rh and ternary Pt-Pd-Rh alloys. CALPHAD Comput. Coupling Phase Diagrams Thermochem. 2009, 33, 370. [Google Scholar] [CrossRef]
- Xu, X.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 255. [Google Scholar] [CrossRef] [PubMed]
- Foroughi, F.; Lamb, J.J.; Burheim, O.S.; Pollet, B.G. Sonochemical and Sonoelectrochemical Production of Energy Materials. Catalysts 2021, 11, 284. [Google Scholar] [CrossRef]
- Guittonneau, F.; Abdelouas, A.; Grambow, B.; Huclier, S. The effect of high-power ultrasound on an aqueous suspension of graphite. Ultrason. Sonochem. 2010, 17, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Rice, F.O.; Freamo, M. The Formation of the imine radical in the electrical discharge. J. Am. Chem. Soc. 1935, 75, 548. [Google Scholar] [CrossRef]
- Saha, N.C.; Tompkins, H.G. Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. App. Phys. 1992, 72, 3072. [Google Scholar] [CrossRef]
- Vakarelski, I.U.; Patankar, N.A.; Marston, J.O.; Chan, D.Y.C.; Thoroddsen, S.T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 2012, 489, 274. [Google Scholar] [CrossRef]
- Es-Souni, M.; Es-Souni, M.; Dietze, M. A universal, template-free approach to porous oxide and polymer film processing. RSC Adv. 2011, 1, 579. [Google Scholar] [CrossRef]
- Trojanowicz, M. Analytical applications of carbon nanotubes: A review. Trends Anal. Chem. 2006, 25, 480. [Google Scholar] [CrossRef]
- Cao, M.; Wang, M.; Gu, N. Optimized Surface Plasmon Resonance Sensitivity of Gold Nanoboxes for Sensing Applications. J. Phys. Chem. C 2009, 113, 1217–1221. [Google Scholar] [CrossRef]
- Kamat, P.V. TiO2 Nanostructures: Recent Physical Chemistry Advances. J. Phys. Chem. C 2012, 116, 11849. [Google Scholar] [CrossRef]
- Yu, C.; Li, G.; Kumar, S.; Kawasaki, H.; Jin, R. Stable Au25(SR)18/TiO2 Composite Nanostructure with Enhanced Visible Light Photocatalytic Activity. J. Phys. Chem. Lett. 2013, 4, 2847. [Google Scholar] [CrossRef]
- Tian, Y.; Tatsuma, T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632. [Google Scholar] [CrossRef] [PubMed]
- Star, A.; Joshi, V.; Skarupo, S.; Thomas, D.; Gabriel, J.-C.P. Gas Sensor Array Based on Metal-Decorated Carbon Nanotubes. J. Phys. Chem. B 2006, 110, 21014–21020. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Mater. Sci. 2021, 3, 390. [Google Scholar] [CrossRef]
- Tanaka, A.; Sakaguchi, S.; Hashimoto, K.; Kominami, H. Preparation of Au/TiO2 with Metal Cocatalysts Exhibiting Strong Surface Plasmon Resonance Effective for Photoinduced Hydrogen Formation under Irradiation of Visible Light. ACS Catal. 2013, 3, 79–85. [Google Scholar] [CrossRef]
- Li, X.-H.; Baar, M.; Blechert, S.; Antonietti, M. Facilitating room-temperature Suzuki coupling reaction with light: Mott-Schottky photocatalyst for C-C-coupling. Sci. Rep. 2013, 3, 1743. [Google Scholar] [CrossRef]
- Peng, Z.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143. [Google Scholar] [CrossRef]
- Koper, M.T. Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 2011, 3, 2054. [Google Scholar] [CrossRef]
- Liu, L.; Scholz, R.; Pippel, E.; Gösele, U. Microstructure, electrocatalytic and sensing properties of nanoporous Pt46Ni54 alloy nanowires fabricated by mild dealloying. J. Mater. Chem. 2010, 20, 5621. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys. Chem. Chem. Phys. 2011, 13, 4083. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Kapri, S.; Bhattacharyya, S. Enhanced catalytic activity of palladium nanoparticles confined inside porous carbon in methanol electro-oxidation. Green Chem. 2015, 17, 15. [Google Scholar] [CrossRef]
- Iyyamperumal, R.; Zhang, L.; Henkelman, G.; Crooks, R.M. Efficient Electrocatalytic Oxidation of Formic Acid Using Au@Pt Dendrimer-Encapsulated Nanoparticles. J. Am. Chem. Soc. 2013, 135, 5521. [Google Scholar] [CrossRef] [PubMed]
- Nutt, M.O.; Heck, K.N.; Alvarez, P.; Wong, M.S. Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl. Catal. B Environ. 2006, 69, 115. [Google Scholar] [CrossRef]
- Singh-Miller, N.E.; Marzari, N. Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys. Rev. B 2009, 80, 235407. [Google Scholar] [CrossRef]
- Jiang, K.; Zhang, H.-X.; Zou, S.; Cai, W.B. Electrocatalysis of formic acid on palladium and platinum surfaces: From fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014, 16, 20360. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Es-Souni, M. Exploiting Interfacial Effects between Collapsing Bubbles and Nanocarbon/TiN Substrates for the Green Synthesis of Self-Organized Noble Metal and Nanoalloy Nanoparticles. Micromachines 2023, 14, 1141. https://doi.org/10.3390/mi14061141
Es-Souni M. Exploiting Interfacial Effects between Collapsing Bubbles and Nanocarbon/TiN Substrates for the Green Synthesis of Self-Organized Noble Metal and Nanoalloy Nanoparticles. Micromachines. 2023; 14(6):1141. https://doi.org/10.3390/mi14061141
Chicago/Turabian StyleEs-Souni, Mohammed. 2023. "Exploiting Interfacial Effects between Collapsing Bubbles and Nanocarbon/TiN Substrates for the Green Synthesis of Self-Organized Noble Metal and Nanoalloy Nanoparticles" Micromachines 14, no. 6: 1141. https://doi.org/10.3390/mi14061141
APA StyleEs-Souni, M. (2023). Exploiting Interfacial Effects between Collapsing Bubbles and Nanocarbon/TiN Substrates for the Green Synthesis of Self-Organized Noble Metal and Nanoalloy Nanoparticles. Micromachines, 14(6), 1141. https://doi.org/10.3390/mi14061141