Laser Bioprinting with Cell Spheroids: Accurate and Gentle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup for Bioprinting with Cell Spheroids
2.2. Sterile Zone for Cell Spheroids Laser Bioprinting
2.3. Laser Exposure Modes Setting and Characterization
- To set the size of the laser spot close to the size of the diameter of the cell spheroid;
- To minimize the pressure gradients in the cell spheroid area by redistributing the energy maxima of the laser impact on the peripheral region of the spheroid;
- To reduce the energy of laser exposure in the area where the spheroid is located closest to the absorbing layer on the donor plate (in the center of the laser spot) to reduce the negative impact of high pulsed temperatures near the absorbing layer on the cell spheroid [29].
2.4. Methodology for Calculating Laser Irradiation for Non-Gauss Intensity Distributions
2.5. Bioink Preparation
Spheroid Viability Analysis
3. Results and Discussion
3.1. Features of Laser Transfer of Cellular Spheroids and Their Phantoms Using the Gaussian Intensity Distribution Profile
3.2. Features of Laser Transport of Cellular Spheroids Using a Non-Gaussian Intensity Distribution Profile
3.3. Survival of Cell Spheroids after Laser Transfer
3.4. Advantages and Disadvantages of Different LIFT Modes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Groll, J.; Boland, T.; Blunk, T.; Burdick, J.A.; Cho, D.-W.; Dalton, P.D.; Derby, B.; Forgacs, G.; Li, Q.; Mironov, V.A.; et al. Biofabrication: Reappraising the Definition of an Evolving Field. Biofabrication 2016, 8, 013001. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.; Hong, J.; Hwangbo, H.; Kim, G. The Utility of Biomedical Scaffolds Laden with Spheroids in Various Tissue Engineering Applications. Theranostics 2021, 11, 6818–6832. [Google Scholar] [CrossRef] [PubMed]
- Mironov, V.; Visconti, R.P.; Kasyanov, V.; Forgacs, G.; Drake, C.J.; Markwald, R.R. Organ Printing: Tissue Spheroids as Building Blocks. Biomaterials 2009, 30, 2164–2174. [Google Scholar] [CrossRef] [PubMed]
- Mandrycky, C.; Wang, Z.; Kim, K.; Kim, D. 3D Bioprinting for Engineering Complex Tissues. Biotechnol. Adv. 2016, 34, 422–434. [Google Scholar] [CrossRef]
- Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances. Bioact. Mater. 2018, 3, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Boularaoui, S.; Al Hussein, G.; Khan, K.A.; Christoforou, N.; Stefanini, C. An Overview of Extrusion-Based Bioprinting with a Focus on Induced Shear Stress and Its Effect on Cell Viability. Bioprinting 2020, 20, e00093. [Google Scholar] [CrossRef]
- Ayan, B.; Celik, N.; Zhang, Z.; Zhou, K.; Kim, M.H.; Banerjee, D.; Wu, Y.; Costanzo, F.; Ozbolat, I.T. Aspiration-Assisted Freeform Bioprinting of Pre-Fabricated Tissue Spheroids in a Yield-Stress Gel. Commun. Phys. 2020, 3, 183. [Google Scholar] [CrossRef]
- Heo, D.N.; Ayan, B.; Dey, M.; Banerjee, D.; Wee, H.; Lewis, G.S.; Ozbolat, I.T. Aspiration-Assisted Bioprinting of Co-Cultured Osteogenic Spheroids for Bone Tissue Engineering. Biofabrication 2020, 13, 015013. [Google Scholar] [CrossRef]
- Chen, K.; Jiang, E.; Wei, X.; Xia, Y.; Wu, Z.; Gong, Z.; Shang, Z.; Guo, S. The Acoustic Droplet Printing of Functional Tumor Microenvironments. Lab. Chip. 2021, 21, 1604–1612. [Google Scholar] [CrossRef]
- Moldovan, N.I.; Hibino, N.; Nakayama, K. Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting. Tissue Eng. Part B Rev. 2017, 23, 237–244. [Google Scholar] [CrossRef]
- Ovsianikov, A.; Gruene, M.; Pflaum, M.; Koch, L.; Maiorana, F.; Wilhelmi, M.; Haverich, A.; Chichkov, B. Laser Printing of Cells into 3D Scaffolds. Biofabrication 2010, 2, 014104. [Google Scholar] [CrossRef]
- Minaev, N.V.; Yusupov, V.I.; Zhigarkov, V.S.; Churbanova, E.S.; Cheptsov, V.S.; Gorlenko, M.V.; Bagratashvili, V.N. Laser Printing of Gel Microdrops with Living Cells and Microorganisms. KnE Energy Phys. 2018, 2018, 23–31. [Google Scholar] [CrossRef]
- Yusupov, V.I.; Zhigar’kov, V.S.; Churbanova, E.S.; Chutko, E.A.; Evlashin, S.A.; Gorlenko, M.V.; Cheptsov, V.S.; Minaev, N.V.; Bagratashvili, V.N. Laser-Induced Transfer of Gel Microdroplets for Cell Printing. Quantum. Electron. 2017, 47, 1158–1165. [Google Scholar] [CrossRef]
- Chrisey, D.B. The Power of Direct Writing. Science 2000, 289, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Antoshin, A.A.; Churbanov, S.N.; Minaev, N.V.; Zhang, D.; Zhang, Y.; Shpichka, A.I.; Timashev, P.S. LIFT-Bioprinting, Is It Worth It? Bioprinting 2019, 15, e00052. [Google Scholar] [CrossRef]
- Mareev, E.; Minaev, N.; Zhigarkov, V.; Yusupov, V. Evolution of Shock-Induced Pressure in Laser Bioprinting. Photonics 2021, 8, 374. [Google Scholar] [CrossRef]
- Zhigarkov, V.; Volchkov, I.; Yusupov, V.; Chichkov, B. Metal Nanoparticles in Laser Bioprinting. Nanomaterials 2021, 11, 2584. [Google Scholar] [CrossRef]
- Zhigarkov, V.S.; Minaev, N.V.; Yusupov, V.I. Destruction of Absorbing Metal Films during Laser Printing with Gel Microdroplets. Quantum. Electron. 2020, 50, 1134–1139. [Google Scholar] [CrossRef]
- Zhigarkov, V.S.; Yusupov, V.I. Impulse Pressure in Laser Printing with Gel Microdroplets. Opt. Laser Technol. 2021, 137, 106806. [Google Scholar] [CrossRef]
- Vinson, B.T.; Phamduy, T.B.; Shipman, J.; Riggs, B.; Strong, A.L.; Sklare, S.C.; Murfee, W.L.; Burow, M.E.; Bunnell, B.A.; Huang, Y.; et al. Laser Direct-Write Based Fabrication of a Spatially-Defined, Biomimetic Construct as a Potential Model for Breast Cancer Cell Invasion into Adipose Tissue. Biofabrication 2017, 9, 025013. [Google Scholar] [CrossRef]
- Yusupov, V.; Churbanov, S.; Churbanova, E.; Bardakova, K.; Antoshin, A.; Evlashin, S.; Timashev, P.; Minaev, N. Laser-Induced Forward Transfer Hydrogel Printing: A Defined Route for Highly Controlled Process. Int. J. Bioprinting 2020, 6, 271. [Google Scholar] [CrossRef]
- Liang, P.; Shang, L.; Wang, Y.; Booth, M.J.; Li, B. Laser Induced Forward Transfer Isolating Complex-Shaped Cell by Beam Shaping. Biomed. Opt. Express 2021, 12, 7024. [Google Scholar] [CrossRef]
- Botchway, S.W.; Reynolds, P.; Parker, A.W.; O’Neill, P. Use of near Infrared Femtosecond Lasers as Sub-Micron Radiation Microbeam for Cell DNA Damage and Repair Studies. Mutat. Res. Mutat. Res. 2010, 704, 38–44. [Google Scholar] [CrossRef]
- Karakaidos, P.; Kryou, C.; Simigdala, N.; Klinakis, A.; Zergioti, I. Laser Bioprinting of Cells Using UV and Visible Wavelengths: A Comparative DNA Damage Study. Bioengineering 2022, 9, 378. [Google Scholar] [CrossRef] [PubMed]
- Laskin, A. Achromatic Refractive Beam Shaping Optics for Broad Spectrum Laser Applications. Proc. SPIE 2009, 743003. [Google Scholar] [CrossRef]
- Gorlenko, M.V.; Chutko, E.A.; Churbanova, E.S.; Minaev, N.V.; Kachesov, K.I.; Lysak, L.V.; Evlashin, S.A.; Cheptsov, V.S.; Rybaltovskiy, A.O.; Yusupov, V.I.; et al. Laser Microsampling of Soil Microbial Community. J. Biol. Eng. 2018, 12, 27. [Google Scholar] [CrossRef]
- Cheptsov, V.S.; Churbanova, E.S.; Yusupov, V.I.; Gorlenko, M.V.; Lysak, L.V.; Minaev, N.V.; Bagratashvili, V.N.; Chichkov, B.N. Laser Printing of Microbial Systems: Effect of Absorbing Metal Film. Lett. Appl. Microbiol. 2018, 67, 544–549. [Google Scholar] [CrossRef]
- Yusupov, V.I.; Gorlenko, M.V.; Cheptsov, V.S.; Minaev, N.V.; Churbanova, E.S.; Zhigarkov, V.S.; Chutko, E.A.; Evlashin, S.A.; Chichkov, B.N.; Bagratashvili, V.N. Laser Engineering of Microbial Systems. Laser Phys. Lett. 2018, 15, 065604. [Google Scholar] [CrossRef]
- Grosfeld, E.V.; Zhigarkov, V.S.; Alexandrov, A.I.; Minaev, N.V.; Yusupov, V.I. Theoretical and Experimental Assay of Shock Experienced by Yeast Cells during Laser Bioprinting. Int. J. Mol. Sci. 2022, 23, 9823. [Google Scholar] [CrossRef]
- Kosheleva, N.V.; Efremov, Y.M.; Koteneva, P.I.; Ilina, I.V.; Zurina, I.M.; Bikmulina, P.Y.; Shpichka, A.I.; Timashev, P.S. Building a Tissue: Mesenchymal and Epithelial Cell Spheroids Mechanical Properties at Micro- and Nanoscale. Acta Biomater. 2022, in press. [CrossRef] [PubMed]
- Gettler, B.C.; Zakhari, J.S.; Gandhi, P.S.; Williams, S.K. Formation of Adipose Stromal Vascular Fraction Cell-Laden Spheroids Using a Three-Dimensional Bioprinter and Superhydrophobic Surfaces. Tissue Eng. Part C Methods 2017, 23, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Goulart, E.; de Caires-Junior, L.C.; Telles-Silva, K.A.; Araujo, B.H.S.; Rocco, S.A.; Sforca, M.; de Sousa, I.L.; Kobayashi, G.S.; Musso, C.M.; Assoni, A.F.; et al. 3D Bioprinting of Liver Spheroids Derived from Human Induced Pluripotent Stem Cells Sustain Liver Function and Viability in Vitro. Biofabrication 2019, 12, 015010. [Google Scholar] [CrossRef] [PubMed]
- Duarte Campos, D.F.; Lindsay, C.D.; Roth, J.G.; LeSavage, B.L.; Seymour, A.J.; Krajina, B.A.; Ribeiro, R.; Costa, P.F.; Blaeser, A.; Heilshorn, S.C. Bioprinting Cell- and Spheroid-Laden Protein-Engineered Hydrogels as Tissue-on-Chip Platforms. Front. Bioeng. Biotechnol. 2020, 8, 374. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, I.N.; Olivos, D.J.; Brinker, A.; Alvarez, M.B.; Smith, L.J.; Chu, T.-M.G.; Kacena, M.A.; Wagner, D.R. Scaffold-Free Bioprinting of Mesenchymal Stem Cells Using the Regenova Printer: Spheroid Characterization and Osteogenic Differentiation. Bioprinting 2019, 15, e00050. [Google Scholar] [CrossRef] [PubMed]
Type of Intensity Distribution in the Laser Spot | Conventional Name of the Intensity Distribution | Laser Spot Diameter, μm | Laser Pulse Energy, μJ |
---|---|---|---|
Gaussian | Thin Gauss | DTG = 30 | ETG= 80 ± 5 |
Gaussian | Adapted Gauss | DAG = 150 | EAG = 120 ± 15 |
Gaussian | Wide Gauss | DWG~1000 | EWG~1000 |
non-Gaussian | Ring and Dot | DRD = 200 | ERD = 95 ± 6 |
non-Gaussian | Two Rings | DTR = 350 | ETR = 206 ± 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minaeva, E.D.; Antoshin, A.A.; Kosheleva, N.V.; Koteneva, P.I.; Gonchukov, S.A.; Tsypina, S.I.; Yusupov, V.I.; Timashev, P.S.; Minaev, N.V. Laser Bioprinting with Cell Spheroids: Accurate and Gentle. Micromachines 2023, 14, 1152. https://doi.org/10.3390/mi14061152
Minaeva ED, Antoshin AA, Kosheleva NV, Koteneva PI, Gonchukov SA, Tsypina SI, Yusupov VI, Timashev PS, Minaev NV. Laser Bioprinting with Cell Spheroids: Accurate and Gentle. Micromachines. 2023; 14(6):1152. https://doi.org/10.3390/mi14061152
Chicago/Turabian StyleMinaeva, Ekaterina D., Artem A. Antoshin, Nastasia V. Kosheleva, Polina I. Koteneva, Sergey A. Gonchukov, Svetlana I. Tsypina, Vladimir I. Yusupov, Peter S. Timashev, and Nikita V. Minaev. 2023. "Laser Bioprinting with Cell Spheroids: Accurate and Gentle" Micromachines 14, no. 6: 1152. https://doi.org/10.3390/mi14061152
APA StyleMinaeva, E. D., Antoshin, A. A., Kosheleva, N. V., Koteneva, P. I., Gonchukov, S. A., Tsypina, S. I., Yusupov, V. I., Timashev, P. S., & Minaev, N. V. (2023). Laser Bioprinting with Cell Spheroids: Accurate and Gentle. Micromachines, 14(6), 1152. https://doi.org/10.3390/mi14061152