A Compact MIMO Multiband Antenna for 5G/WLAN/WIFI-6 Devices
Abstract
:1. Introduction
2. Single Antenna Element Design
3. Design Analysis of MIMO Antenna
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, S.; Li, Y.; Xia, Y.; Zhang, L. A low mutual coupling antenna array with gain enhancement using metamaterial loading and neutralization line structure. Appl. Comput. Electromagn. Soc. J. 2019, 34, 411–418. [Google Scholar]
- Li, M.Y.; Xu, Z.Q.; Ban, Y.L.; Sim, C.Y.D.; Yu, Z.F. Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone. IET Microw. Antennas Propag. 2017, 11, 1810–1816. [Google Scholar] [CrossRef]
- Naidu, P.V.; Dhanekula, M.B.; Almustafa, K.M.; Kumar, A.; Meerja, K.A.; Akkapanthula, S.H. Design and performance analysis of MAZE shaped quad port ACS fed tri band MIMO antenna for V2V and multi band applications. AEU-Int. J. Electron. Commun. 2021, 134, 153676. [Google Scholar] [CrossRef]
- Wu, D.; Qiu, Y.; Yu, G.; Guo, R.; Wu, G.; Wang, J.; Zhang, Y.; Zhu, M.; Zhou, H.-M. Decoupling Technique Using Ferrite-Film Loading for 5G MIMO Applications. Int. J. Antennas Propag. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Singh, A.K.; Dwivedi, A.K.; Nagesh, K.N.; Singh, V.; Yadav, R.S. Compact 4-port planar MIMO antenna with enhanced isolation for WLAN/WiMAX applications. Sādhanā 2022, 47, 138. [Google Scholar] [CrossRef]
- Paiva, S.B.; Junior, A.G.D.; Neto, V.P.S.; D’Assunção, A.G. A New Compact Dual-Polarized MIMO Antenna Using Slot and Parasitic Element Decoupling for 5G and WLAN Applications. Electronics 2022, 11, 1943. [Google Scholar] [CrossRef]
- Oliveira, J.G.D.; D’Assunção Junior, A.G.; Silva Neto, V.P.; D’Assunção, A.G. New compact MIMO antenna for 5G, WiMAX and WLAN technologies with dual polarisation and element diversity. IET Microw. Antennas Propag. 2021, 15, 415–426. [Google Scholar] [CrossRef]
- Zhao, A.; Ren, Z. Size Reduction of Self-Isolated MIMO Antenna System for 5G Mobile Phone Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 18, 152–156. [Google Scholar] [CrossRef]
- Parchin, N.O.; Al-Yasir, Y.I.A.; Ali, A.H.; Elfergani, I.; Noras, J.M.; Rodriguez, J.; Abd-Alhameed, R.A. Eight-Element Dual-Polarized MIMO Slot Antenna System for 5G Smartphone Applications. IEEE Access 2019, 7, 15612–15622. [Google Scholar] [CrossRef]
- Bashar, A. Artificial intelligence based LTE MIMO antenna for 5th generation mobile networks. J. Artif. Intell. 2020, 2, 155–162. [Google Scholar]
- Lin, B.; Gao, F.; Zhang, S.; Zhou, T.; Alkhateeb, A. Deep Learning-Based Antenna Selection and CSI Extrapolation in Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2021, 20, 7669–7681. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Simorangkir, R.B.; Bayat-Makou, N.; Kishk, A.A.; Esselle, K.P. Advancements and artificial intelligence approaches in antennas for environmental sensing. In Artificial Intelligence and Data Science in Environmental Sensing; Academic Press: Cambridge, MA, USA, 2022; pp. 19–38. [Google Scholar]
- Neebha, T.M.; Nesasudha, M. Artificial neural network based design of a microstrip patch antenna for RADAR applications. In Proceedings of the 2017 First International Conference on Recent Advances in Aerospace Engineering (ICRAAE), Coimbatore, India, 3–4 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Wu, Q.; Cao, Y.; Wang, H.; Hong, W. Machine-learning-assisted optimization and its application to antenna designs: Opportunities and challenges. China Commun. 2020, 17, 152–164. [Google Scholar] [CrossRef]
- Dicandia, F.A.; Fonseca, N.J.G.; Bacco, M.; Mugnaini, S.; Genovesi, S. Space-Air-Ground Integrated 6G Wireless Communication Networks: A Review of Antenna Technologies and Application Scenarios. Sensors 2022, 22, 3136. [Google Scholar] [CrossRef] [PubMed]
- Dicandia, F.A.; Genovesi, S.; Monorchio, A. Analysis of the Performance Enhancement of MIMO Systems Employing Circular Polarization. IEEE Trans. Antennas Propag. 2017, 65, 4824–4835. [Google Scholar] [CrossRef]
- Ullah, U.; Al-Hasan, M.; Koziel, S.; Ben Mabrouk, I. Series-Slot-Fed Circularly Polarized Multiple-Input–Multiple-Output Antenna Array Enabling Circular Polarization Diversity for 5G 28 GHz Indoor Applications. IEEE Trans. Antennas Propag. 2021, 69, 5607–5616. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.-J.; Abbas, A.; Kim, N. Metasurface-Based Single-Layer Wideband Circularly Polarized MIMO Antenna for 5G Millimeter-Wave Systems. IEEE Access 2020, 8, 130293–130304. [Google Scholar] [CrossRef]
- Vaughan, R.; Andersen, J. Antenna diversity in mobile communications. IEEE Trans. Veh. Technol. 1987, 36, 149–172. [Google Scholar] [CrossRef]
- Rosengren, K.; Kildal, P.-S. Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: Theory, simulation and measurement in reverberation chamber. IEE Proc.-Microw. Antennas Propag. 2005, 152, 7–16. [Google Scholar] [CrossRef]
- Sharawi, M.S.; Khan, M.U.; Numan, A.B.; Aloi, D.N. A CSRR Loaded MIMO Antenna System for ISM Band Operation. IEEE Trans. Antennas Propag. 2013, 61, 4265–4274. [Google Scholar] [CrossRef]
- Munir, M.E.; Kiani, S.H.; Savci, H.S.; Marey, M.; Khan, J.; Mostafa, H.; Parchin, N.O. A Four Element mm-Wave MIMO Antenna System with Wide-Band and High Isolation Characteristics for 5G Applications. Micromachines 2023, 14, 776. [Google Scholar] [CrossRef]
- Munir, M.E.; Al Harbi, A.G.; Kiani, S.H.; Marey, M.; Parchin, N.O.; Khan, J.; Mostafa, H.; Iqbal, J.; Khan, M.A.; See, C.H.; et al. A New mm-Wave Antenna Array with Wideband Characteristics for Next Generation Communication Systems. Electronics 2022, 11, 1560. [Google Scholar] [CrossRef]
- Khan, M.A.; Al Harbi, A.G.; Kiani, S.H.; Nordin, A.N.; Munir, M.E.; Saeed, S.I.; Iqbal, J.; Ali, E.M.; Alibakhshikenari, M.; Dalarsson, M. mmWave Four-Element MIMO Antenna for Future 5G Systems. Appl. Sci. 2022, 12, 4280. [Google Scholar] [CrossRef]
Specification | Dimension (mm) | Specification | Dimension (mm) |
---|---|---|---|
L1 | 1 | L11 | 1.5 |
W1 | 5 | W11 | 7 |
L2 | 1.5 | L12 | 2.8 |
W2 | 3.6 | W12 | 2.5 |
L3 | 1.7 | L13 | 1.8 |
W3 | 2.2 | W13 | 0.8 |
L4 | 1.1 | L14 | 8.8 |
L5 | 0.5 | L15 | 0.5 |
W5 | 4.8 | W15 | 6.5 |
L6 | 2.9 | GL | 2.5 |
W6 | 3.1 | GW | 10 |
L7 | 4.9 | LS1 | 16 |
W7 | 1.3 | WS1 | 10 |
L8 | 8.3 | LS2 | 16 |
W8 | 0.6 | WS2 | 28 |
L9 | 1.8 | D1 | 3.3 |
W9 | 4.2 | D2 | 2.8 |
L10 | 6.8 | D3 | 12.70 |
W10 | 2 |
Ref. | Operating Frequency (GHz) | Isolation (dB) | ECC | Peak Gain (dBi) | Efficiency (%) | Decoupling Method | Total Size (mm3) | Implementation Complexity |
---|---|---|---|---|---|---|---|---|
[3] | 2.25–2.41, 3.36–3.65 and 4.7–6.25 | <−15 | <0.0086 | 1.5–2.9 | 80–88 | Self-isolated | 48 × 48 × 1.6 | Uncomplicated |
[4] | 3.35–3.67 | <−10 | NR | 2 | 43–45.5 | Ferrite loading | 11.3 × 4 × 1 | Complicated |
[5] | 4.36–6.90 | <−20 | <0.08 | 2 | >90 | Self-isolated | 25 × 25 × 1.57 | Uncomplicated |
[6] | 3.4–3.6 5.15–5.85 | <−15 | <0.11 | 2 | >86 | Parasitic stripline | 25 × 25 × 1.57 | Uncomplicated |
[7] | 3.1–5.2 | <−15 | <0.05 | 2.6 | >90 | Self-isolated | 35 × 35 × 1.57 | Uncomplicated |
[8] | 3.4–3.6 | >15 | <0.012 | 2.5 | 60–70 | Parasitic structure | 75 × 150 × 1.6 (8 elements) | Uncomplicated |
[9] | 3.4–3.8 | >12 | <0.05 | 3 | 65–80 | Modified ground structure | 75 × 150 × 1.59 (2 elements) | Uncomplicated |
This work | 3.5, 5.5 and 6.5 | >15 | <0.04 | 3.49 | >80 | Polarization diversity | 16 × 28 × 1.6 (2 elements) | Uncomplicated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Munir, M.E.; Marey, M.; Mostafa, H.; Zakaria, Z.; Al-Gburi, A.J.A.; Bhatti, F.A. A Compact MIMO Multiband Antenna for 5G/WLAN/WIFI-6 Devices. Micromachines 2023, 14, 1153. https://doi.org/10.3390/mi14061153
Ali A, Munir ME, Marey M, Mostafa H, Zakaria Z, Al-Gburi AJA, Bhatti FA. A Compact MIMO Multiband Antenna for 5G/WLAN/WIFI-6 Devices. Micromachines. 2023; 14(6):1153. https://doi.org/10.3390/mi14061153
Chicago/Turabian StyleAli, Ayyaz, Mehr E Munir, Mohamed Marey, Hala Mostafa, Zahriladha Zakaria, Ahmed Jamal Abdullah Al-Gburi, and Farooq Ahmed Bhatti. 2023. "A Compact MIMO Multiband Antenna for 5G/WLAN/WIFI-6 Devices" Micromachines 14, no. 6: 1153. https://doi.org/10.3390/mi14061153
APA StyleAli, A., Munir, M. E., Marey, M., Mostafa, H., Zakaria, Z., Al-Gburi, A. J. A., & Bhatti, F. A. (2023). A Compact MIMO Multiband Antenna for 5G/WLAN/WIFI-6 Devices. Micromachines, 14(6), 1153. https://doi.org/10.3390/mi14061153