Effect of Flow Velocity on Laminar Flow in Microfluidic Chips
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Microfluidic Chips
2.2.2. Fluid Injection Mode
2.2.3. Numerical Simulation of Fluid Motion
2.2.4. Effect of Flow Rate on Laminar Flow Phenomenon
2.2.5. Characterization of Laminar Flow Phenomena
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Microfluidic Chip
3.2. Finite element Model of Fluid Flow Velocity
3.3. Effect of Flow Rate on Laminar Flow Phenomenon
3.4. Characterization of the Fluid Laminar Flow Phenomenon
3.5. Preparation and Characterization of Fibers
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Cheng, J.; Ao, Q. Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar. Drugs 2021, 19, 264. [Google Scholar] [CrossRef]
- Guan, Y.; Huang, Y.; Li, T. Applications of Gelatin in Biosensors: Recent Trends and Progress. Biosensors 2022, 12, 670. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Cong, H.; Yu, B.; Shen, Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J. Mater. Chem. B 2023, 11, 2801–2829. [Google Scholar] [CrossRef] [PubMed]
- Gurave, P.M.; Singh, S.; Yadav, A.; Nandan, B.; Srivastava, R.K. Electrospinning of a Near Gel Resin To Produce Cross-Linked Fibrous Matrices. Langmuir ACS J. Surf. Colloids 2020, 36, 2419–2426. [Google Scholar] [CrossRef]
- Belabbes, K.; Pinese, C.; Leon-Valdivieso, C.Y.; Bethry, A.; Garric, X. Creation of a Stable Nanofibrillar Scaffold Composed of Star-Shaped PLA Network Using Sol-Gel Process during Electrospinning. Molecules 2022, 27, 4154. [Google Scholar] [CrossRef]
- Norris, E.; Ramos-Rivera, C.; Poologasundarampillai, G.; Clark, J.P.; Ju, Q.; Obata, A.; Hanna, J.V.; Kasuga, T.; Mitchell, C.A.; Jell, G.; et al. Electrospinning 3D bioactive glasses for wound healing. Biomed. Mater. 2020, 15, 015014. [Google Scholar] [CrossRef] [PubMed]
- Asakura, T.; Matsuda, H.; Naito, A.; Abe, Y. Formylation of Recombinant Spider Silk in Formic Acid and Wet Spinning Studied Using Nuclear Magnetic Resonance and Infrared Spectroscopies. ACS Biomater. Sci. Eng. 2022, 8, 2390–2402. [Google Scholar] [CrossRef] [PubMed]
- Chalard, A.; Joseph, P.; Souleille, S.; Lonetti, B.; Saffon-Merceron, N.; Loubinoux, I.; Vaysse, L.; Malaquin, L.; Fitremann, J. Wet spinning and radial self-assembly of a carbohydrate low molecular weight gelator into well organized hydrogel filaments. Nanoscale 2019, 11, 15043–15056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquez-Bravo, S.; Doench, I.; Molina, P.; Bentley, F.E.; Tamo, A.K.; Passieux, R.; Lossada, F.; David, L.; Osorio-Madrazo, A. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Polymers 2021, 13, 1563. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Yue, W.; Sohan, A.; Zhou, T.; Qian, C.; Wan, X. Micromixer with Fine-Tuned Mathematical Spiral Structures. ACS Omega 2021, 6, 30779–30789. [Google Scholar] [CrossRef]
- Yin, B.; Wan, X.; Qian, C.; Sohan, A.; Wang, S.; Zhou, T. Point-of-Care Testing for Multiple Cardiac Markers Based on a Snail-Shaped Microfluidic Chip. Front. Chem. 2021, 9, 741058. [Google Scholar] [CrossRef]
- Yin, B.F.; Wan, X.H.; Yang, M.Z.; Qian, C.C.; Sohan, A. Wave-shaped microfluidic chip assisted point-of-care testing for accurate and rapid diagnosis of infections. Mil. Med. Res. 2022, 9, 8–20. [Google Scholar] [CrossRef]
- Yin, B.; Qian, C.; Wan, X.; Muhtasim Fuad Sohan, A.S.M.; Lin, X. Tape integrated self-designed microfluidic chip for point-of-care immunoassays simultaneous detection of disease biomarkers with tunable detection range. Biosens. Bioelectron. 2022, 212, 114429. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Wan, X.; Qian, C.; Sohan, A.; Zhou, T.; Yue, W. Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions. Micromachines 2021, 12, 1380. [Google Scholar] [CrossRef]
- Nagrath, M.; Alhalawani, A.; Rahimnejad Yazdi, A.; Towler, M.R. Bioactive glass fiber fabrication via a combination of sol-gel process with electro-spinning technique. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 521–538. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, Z.; Chen, S.; Zhang, F.; Rao, Z.; Zhao, C.; Quan, D.; Bai, Y.; Shen, J. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair. Theranostics 2021, 11, 2917–2931. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, P.; Akono, A.T. Novel Wet Electrospinning Inside a Reactive Pre-Ceramic Gel to Yield Advanced Nanofiber-Reinforced Geopolymer Composites. Polymers 2022, 14, 3943. [Google Scholar] [CrossRef]
- Wei, L.; Wang, S.; Shan, M.; Li, Y.; Wang, Y.; Wang, F.; Wang, L.; Mao, J. Conductive fibers for biomedical applications. Bioact. Mater. 2023, 22, 343–364. [Google Scholar] [CrossRef]
- Jin, G.; He, R.; Sha, B.; Li, W.; Qing, H.; Teng, R.; Xu, F. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 92, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, S.; Sharifi, H. Electrospun-Reinforced Suturable Biodegradable Artificial Cornea. ACS Appl. Bio. Mater. 2022, 5, 5716–5727. [Google Scholar] [CrossRef] [PubMed]
- Gursoy, A.; Iranshahi, K.; Wei, K.; Tello, A.; Armagan, E.; Boesel, L.F.; Sorin, F.; Rossi, R.M.; Defraeye, T.; Toncelli, C. Facile Fabrication of Microfluidic Chips for 3D Hydrodynamic Focusing and Wet Spinning of Polymeric Fibers. Polymers 2020, 12, 633. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Gao, Q.; Li, S.; Hu, S.; Wang, J.; Fischer, P.; Stavrakis, S.; deMello, A.J. Laminar Flow-Based Fiber Fabrication and Encoding via Two-Photon Lithography. ACS Appl. Mater. Interfaces 2020, 12, 54068–54074. [Google Scholar] [CrossRef]
- Nguyen, T.P.T.; Le, N.X.T.; Lee, N.Y. Microfluidic Approach to Generate a Tadpole-Egg-Shaped Alginate Fiber and Its Application in Tissue Engineering. ACS Biomater. Sci. Eng. 2020, 6, 1663–1670. [Google Scholar] [CrossRef]
- Chaurasia, A.S.; Sajjadi, S. Transformable bubble-filled alginate microfibers via vertical microfluidics. Lab A Chip 2019, 19, 851–863. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, K.; Morimoto, Y.; Mori, N.; Takeuchi, S. Formation of Branched and Chained Alginate Microfibers Using Theta-Glass Capillaries. Micromachines 2018, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Ulep, T.H.; Zenhausern, R.; Gonzales, A.; Knoff, D.S.; Lengerke Diaz, P.A.; Castro, J.E.; Yoon, J.Y. Smartphone based on-chip fluorescence imaging and capillary flow velocity measurement for detecting ROR1+ cancer cells from buffy coat blood samples on dual-layer paper microfluidic chip. Biosens. Bioelectron. 2020, 153, 112042. [Google Scholar] [CrossRef]
- Weng, L.; Zhang, X. In Situ Generating CaCO(3) Nanoparticles Reinforced Nonflammable Calcium Alginate Biocomposite Fiber. Langmuir ACS J. Surf. Colloids 2022, 38, 12491–12498. [Google Scholar] [CrossRef]
- Ding, M.; Wang, X.; Man, J.; Li, J.; Qiu, Y.; Zhang, Y.; Ji, M.; Li, J. Antibacterial and hemostatic polyvinyl alcohol/microcrystalline cellulose reinforced sodium alginate breathable dressing containing Euphorbia humifusa extract based on microfluidic spinning technology. Int. J. Biol. Macromol. 2023, 239, 124167. [Google Scholar] [CrossRef]
- Takeuchi, N.; Nakajima, S.; Yoshida, K.; Kawano, R.; Hori, Y.; Onoe, H. Microfiber-Shaped Programmable Materials with Stimuli-Responsive Hydrogel. Soft Robot. 2022, 9, 89–97. [Google Scholar] [CrossRef]
- Wang, T.; Xu, C. Liquid-liquid-liquid three-phase microsystem: Hybrid slug flow-laminar flow. Lab A Chip 2020, 20, 1891–1897. [Google Scholar] [CrossRef]
- Gou, Y.; Jia, Y.; Wang, P.; Sun, C. Progress of Inertial Microfluidics in Principle and Application. Sensors 2018, 18, 1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, A.; Till, K.; Hafting, Y.; Schüttpelz, M.; Bjørås, M.; Glette, K.; Tørresen, J.; Rowe, A.D.; Dalhus, B. Additive manufacturing of laminar flow cells for single-molecule experiments. Sci. Rep. 2019, 9, 16784. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-H.; Nien, H.-H.; Li, B.-R. Wearable Microfluidics for Continuous Assay. Annu. Rev. Anal. Chem. 2023, 16, 181–203. [Google Scholar] [CrossRef]
- Özyurt, C.; Uludağ, İ.; İnce, B.; Sezgintürk, M.K. Lab-on-a-chip systems for cancer biomarker diagnosis. J. Pharm. Biomed. Anal. 2023, 226, 115266. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.; Li, L.; Xun, X.; Wang, Y.; Wei, X.; Zheng, Y.; Fan, Z.; Sun, X. A Microfluidic System for Detecting Tumor Cells Based on Biomarker Hexaminolevulinate (HAL): Applications in Pleural Effusion. Micromachines 2023, 14, 771. [Google Scholar] [CrossRef]
- Lv, S.; Zheng, D.; Chen, Z.; Jia, B.; Zhang, P.; Yan, J.; Jiang, W.; Zhao, X.; Xu, J.-J. Near-Infrared Light-Responsive Size-Selective Lateral Flow Chip for Single-Cell Manipulation of Circulating Tumor Cells. Anal. Chem. 2023, 95, 1201–1209. [Google Scholar] [CrossRef]
- Xiao, R.-R.; Wang, L.; Zhang, L.; Liu, Y.-N.; Yu, X.-L.; Huang, W.-H. Quantifying Biased Response of Axon to Chemical Gradient Steepness in a Microfluidic Device. Anal. Chem. 2014, 86, 11649–11656. [Google Scholar] [CrossRef] [PubMed]
Group | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
Flow Rate (mL/h) | ||||||
Intermediate velocity | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
Outer layer velocity | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 |
Group | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Flow Rate (mL/h) | |||||||||||
Intermediate velocity | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
Outer layer velocity | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
Group | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Flow Rate (mL/h) | |||||
Intermediate velocity | 1.0 | 1.0 | 1.0 | 1.0 | |
Outer layer velocity | 0.4 | 0.6 | 0.8 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Almuaalemi, H.Y.M.; Sohan, A.S.M.M.F.; Yin, B. Effect of Flow Velocity on Laminar Flow in Microfluidic Chips. Micromachines 2023, 14, 1277. https://doi.org/10.3390/mi14071277
Wu C, Almuaalemi HYM, Sohan ASMMF, Yin B. Effect of Flow Velocity on Laminar Flow in Microfluidic Chips. Micromachines. 2023; 14(7):1277. https://doi.org/10.3390/mi14071277
Chicago/Turabian StyleWu, Chuang, Haithm Yahya Mohammed Almuaalemi, A. S. M. Muhtasim Fuad Sohan, and Binfeng Yin. 2023. "Effect of Flow Velocity on Laminar Flow in Microfluidic Chips" Micromachines 14, no. 7: 1277. https://doi.org/10.3390/mi14071277
APA StyleWu, C., Almuaalemi, H. Y. M., Sohan, A. S. M. M. F., & Yin, B. (2023). Effect of Flow Velocity on Laminar Flow in Microfluidic Chips. Micromachines, 14(7), 1277. https://doi.org/10.3390/mi14071277