A Ku-Band Broadband Stacked FET Power Amplifier Using 0.15 μm GaAs pHEMT
Abstract
:1. Introduction
2. Circuit Design Considerations
2.1. Overall Circuit Analysis and Design
2.2. Impedance Analysis of Stacked Transistors
3. Measurement Results
- In the simulation process of the PA, in order to ensure the consistency between simulation and actual application, we usually consider the influence of the gold wire bonding line in the simulation. However, the use of the probe table for small-signal testing did not introduce the gold wire bonding line, so there was a certain test error.
- Vector network analyzer calibration error (this affected the actual test results, but the impact was not significant, which was related to the actual operation of the tester).
- Model error: according to our past experience, the model provided by the manufacturer had a certain error, with the actual test results compared to the simulation effect.
- The impact of chip temperature (which tends to occur only in high-heat-generating devices, for example a PA): the increase in chip temperature often changed the electrical parameters of the chip, resulting in changes in the test results.
4. Discussion and Conclusions
Author Contributions
Funding
Institution Review Board Statement
Inform Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J. A Wideband Triple-Stacked CMOS Distributed Power Amplifier Using Double Inductive Peaking. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 787–790. [Google Scholar] [CrossRef]
- Wu, H.-F.; Cheng, Q.-F.; Li, X.-G.; Fu, H.-P. Analysis and Design of an Ultrabroadband Stacked Power Amplifier in CMOS Technology. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 49–53. [Google Scholar] [CrossRef]
- Huang, P.-C.; Tsai, Z.-M.; Lin, K.-Y.; Wang, H. A High-Efficiency, Broadband CMOS Power Amplifier for Cognitive Radio Applications. IEEE Trans. Microw. Theory Tech. 2010, 58, 3556–3565. [Google Scholar] [CrossRef]
- Yang, F.; Song, L.; Xu, Y. C-Band 30 W High PAE Power Amplifier MMIC with Second Harmonic Suppression for Radar Network Application. Micromachines 2022, 13, 2079. [Google Scholar] [CrossRef] [PubMed]
- Ezzeddine, A.K.; Huang, H.C. Ultra-Broadband GaAs HIFET MMIC PA. In Proceedings of the 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; pp. 1320–1323. [Google Scholar]
- Fritsche, D.; Wolf, R.; Ellinger, F. Analysis and Design of a Stacked Power Amplifier with Very High Bandwidth. IEEE Trans. Microw. Theory Tech. 2012, 60, 3223–3231. [Google Scholar] [CrossRef]
- Ezzeddine, A.K.; Huang, H.C. The high voltage/high power FET (HiVP). In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Philadelphia, PA, USA, 8–10 June 2003; pp. 215–218. [Google Scholar]
- Pornpromlikit, S.; Jeong, J.; Presti, C.D.; Scuderi, A.; Asbeck, P.M. A Watt-Level Stacked-FET Linear Power Amplifier in Silicon-on-Insulator CMOS. IEEE Trans. Microw. Theory Tech. 2010, 58, 57–64. [Google Scholar] [CrossRef]
- Kim, U.; Kang, S.; Woo, J.; Kwon, Y.; Kim, J. A Multiband Reconfigurable Power Amplifier for UMTS Handset Applications. IEEE Trans. Microw. Theory Tech. 2012, 60, 2532–2542. [Google Scholar] [CrossRef]
- Yamamoto, K.; Miyashita, M.; Maki, S.; Takahashi, Y.; Fujii, K.; Fujiwara, S.; Kitabayashi, F.; Suzuki, S.; Shimura, T.; Hieda, M.; et al. A WCDMA Multiband Power Amplifier Module with Si-CMOS/GaAs-HBT Hybrid Power-Stage Configuration. IEEE Trans. Microw. Theory Tech. 2016, 64, 810–825. [Google Scholar] [CrossRef]
- Moon, J.S.; Kang, J.; Brown, D.; Grabar, R.; Wong, D.; Fung, H.; Chan, P.; Le, D.; Tai, H.Y.; McGuire, C. 100 MHz–8 GHz linear distributed GaN MMIC power amplifier with improved power-added efficiency. In Proceedings of the 2017 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Phoenix, AZ, USA, 15–18 January 2017; pp. 40–43. [Google Scholar]
- Ballı, Ç.; Değirmenci, A.; Aktuğ, A.; Atalar, A. Wideband Distributed Choke Inductor for Distributed Power Amplifiers. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 539–542. [Google Scholar] [CrossRef]
- Kang, D.; Kim, D.; Choi, J.; Kim, J.; Cho, Y.; Kim, B. A Multimode/Multiband Power Amplifier with a Boosted Supply Modulator. IEEE Trans. Microw. Theory Tech. 2010, 58, 2598–2608. [Google Scholar] [CrossRef]
- Kang, D.; Kim, D.; Moon, J.; Kim, B. Broadband HBT Doherty Power Amplifiers for Handset Applications. IEEE Trans. Microw. Theory Tech. 2010, 58, 4031–4039. [Google Scholar] [CrossRef]
- Jagadheswaran, U.R.; Ramiah, H.; Mak, P.-I.; Martins, R.P. A 2-um InGaP/GaAs Class-J Power Amplifier for Multi-Band LTE Achieving 35.8-dB Gain, 40.5% to 55.8% PAE and 28-dBm Linear Output Power. IEEE Trans. Microw. Theory Tech. 2016, 64, 200–209. [Google Scholar] [CrossRef]
- Wu, C.-W.; Lin, Y.-H.; Hsiao, Y.-H.; Chou, C.-F.; Wu, Y.-C.; Wang, H. Design of a 60-GHz High-Output Power Stacked- FET Power Amplifier Using Transformer-Based Voltage-Type Power Combining in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 2018, 66, 4595–4607. [Google Scholar] [CrossRef]
- McRory, J.G.; Rabjohn, G.G.; Johnston, R.H. Transformer coupled stacked FET power amplifiers. IEEE J. Solid-State Circuits 1999, 34, 157–161. [Google Scholar] [CrossRef]
- Lee, C.; Kim, Y.; Koh, Y.; Kim, J.; Seo, K.; Jeong, J.; Kwon, Y. A 18 GHz Broadband Stacked FET Power Amplifier Using 130 nm Metamorphic HEMTs. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 828–830. [Google Scholar] [CrossRef]
- Lei, M.-F.; Tsai, Z.-M.; Lin, K.-Y.; Wang, H. Design and Analysis of Stacked Power Amplifier in Series-Input and Series-Output Configuration. IEEE Trans. Microw. Theory Tech. 2007, 55, 2802–2812. [Google Scholar] [CrossRef]
- Lee, W.; Kang, H.; Lee, H.; Bae, J.; Oh, S.; Oh, H.; Koo, H.; Yoon, J.; Hwang, K.C.; Lee, K.Y.; et al. High-Efficiency Stacked Power Amplifier IC With 23% Fractional Bandwidth for Average Power Tracking Application. IEEE Access 2019, 7, 176658–176667. [Google Scholar] [CrossRef]
- Kim, K.; Choi, I.; Lee, K.; Choi, S.U.; Kim, J.; Choi, C.G.; Song, H.J. Analysis and Design of Multi-Stacked FET Power Amplifier with Phase-Compensation Inductors in Millimeter-Wave Band. IEEE Trans. Microw. Theory Tech. 2023, 71, 1877–1889. [Google Scholar] [CrossRef]
- Park, Y.; Kim, Y.; Choi, W.; Woo, J.; Kwon, Y. X-to-K band broadband watt-level power amplifier using stacked-FET unit cells. In Proceedings of the 2011 IEEE Radio Frequency Integrated Circuits Symposium, Baltimore, MD, USA, 5–7 June 2011; pp. 1–4. [Google Scholar]
- Asgaran, S.; Deen, M.J. A novel gain boosting technique for design of low power narrow-band RFCMOS LNAs. In Proceedings of the 2nd Annual IEEE Northeast Workshop on Circuits and Systems, NEWCAS 2004, Montreal, QC, Canada, 20–23 June 2004. [Google Scholar]
- Cai, Q.; Che, W.; Ma, K.; Xue, Q. A Compact Ku-Band Broadband GaAs Power Amplifier Using an Improved Darlington Power Stage. IEEE Trans. Microw. Theory Tech. 2020, 68, 3068–3078. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Pham, A.-V. An Ultra Compact Watt-Level Ka-Band Stacked-FET Power Amplifier. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 516–518. [Google Scholar] [CrossRef] [Green Version]
- Fersch, T.; Quaglia, R.; Pirola, M.; Camarchia, V.; Ramella, C.; Khoshkholgh, A.J.; Ghione, G.; Weigel, R. Stacked GaAs pHEMTs: Design of a K-band power amplifier and experimental characterization of mismatch effects. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yuan, Y.; Yuan, B.; Fan, J.; Zeng, J.; Yu, Z. A Ku-Band Broadband Stacked FET Power Amplifier Using 0.15 μm GaAs pHEMT. Micromachines 2023, 14, 1276. https://doi.org/10.3390/mi14061276
Li J, Yuan Y, Yuan B, Fan J, Zeng J, Yu Z. A Ku-Band Broadband Stacked FET Power Amplifier Using 0.15 μm GaAs pHEMT. Micromachines. 2023; 14(6):1276. https://doi.org/10.3390/mi14061276
Chicago/Turabian StyleLi, Jiaxuan, Yang Yuan, Bin Yuan, Jingxin Fan, Jialong Zeng, and Zhongjun Yu. 2023. "A Ku-Band Broadband Stacked FET Power Amplifier Using 0.15 μm GaAs pHEMT" Micromachines 14, no. 6: 1276. https://doi.org/10.3390/mi14061276
APA StyleLi, J., Yuan, Y., Yuan, B., Fan, J., Zeng, J., & Yu, Z. (2023). A Ku-Band Broadband Stacked FET Power Amplifier Using 0.15 μm GaAs pHEMT. Micromachines, 14(6), 1276. https://doi.org/10.3390/mi14061276