Performance Analysis of an Aperture-Coupled THz Antenna for Diagnosing Breast Cancer
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Related Works
1.3. Contributions
- (1)
- It features a planar and straightforward structure that can be easily traced onto non-planar breast tissue.
- (2)
- Its wider impedance bandwidth allows for radiation penetration into tissue at different depths.
- (3)
- It offers higher gain.
- (4)
- It displays good sensitivity to unhealthy tissue.
1.4. Paper Organization
2. Antenna Topology and Performance Analysis on Free Space
3. Performance Analysis of Antenna for Breast Cancer Detection
3.1. Design of Breast Phantom and Simulation Setup for Imaging of Breast Cancer
3.2. Backscattered Signal Analysis for Tumor Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alsharif, M.H.; Albreem, M.A.M.; Solyman, A.A.A.; Kim, S. Toward 6G Communication Networks: Terahertz Frequency Challenges and Open Research Issues. Comput. Mater. Contin. 2021, 66, 2831–2842. [Google Scholar] [CrossRef]
- Castro-Camus, E.; Koch, M.; Mittleman, D.M. Recent advances in terahertz imaging: 1999 to 2021. Appl. Phys. B Laser Opt. 2021, 128, 12. [Google Scholar] [CrossRef]
- Gupta, A.; Chawla, P.; Kansal, A.; Singh, K. An Active and Low-cost Microwave Imaging System for Detection of Breast Cancer Using Back Scattered Signal. Curr. Med. Imaging Former. Curr. Med. Imaging Rev. 2022, 18, 460–475. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Chawla, P.; Goyal, B.; Dogra, A. Defected Ground UWB Antenna for Microwave Imaging-Based Breast Cancer Detection. In Advances in Data Computing, Communication and Security; Springer: Singapore, 2022; pp. 477–485. [Google Scholar]
- Malhotra, I.; Jha, K.R.; Singh, G. Terahertz antenna technology for imaging applications: A technical review. Int. J. Microw. Wirel. Technol. 2018, 10, 271–290. [Google Scholar] [CrossRef]
- Vohra, N.; Bowman, T.; Diaz, P.M.; Rajaram, N.; Bailey, K.; El-Shenawee, M. Pulsed terahertz reflection imaging of tumors in a spontaneous model of breast cancer. Biomed. Phys. Eng. Express 2018, 4, 065025. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Ren, Y. Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide–graphene integrated configuration. Phys. Chem. Chem. Phys. 2022, 24, 8408–8414. [Google Scholar] [CrossRef]
- Lavrukhin, D.V.; Galiev, R.R.; Pavlov, A.Y.; Yachmenev, A.E.; Maytama, M.V.; Glinskiy, I.A.; Khabibullin, R.A.; Goncharov, Y.G.; Zaytsev, K.I.; Ponomarev, D.S. Plasmonic Photoconductive Antennas for Terahertz Pulsed Spectroscopy and Imaging Systems. Opt. Spectrosc. 2019, 126, 580–586. [Google Scholar] [CrossRef]
- Andhyka, H.T.; Apriono, C. Design of THz High-Resistivity Silicon-Based Microstrip Antenna for Breast Cancer Imaging. Int. J. Adv. Sci. Eng. Inf. Technol. 2020, 10, 2640–2648. [Google Scholar] [CrossRef]
- Samanta, D.; Karthikeyan, M.; Banerjee, A.; Inokawa, H. Tunable graphene nanopatch antenna design for on-chip integrated terahertz detector arrays with potential application in cancer imaging. Nanomedicine 2021, 16, 1035–1047. [Google Scholar] [CrossRef]
- Geetharamani, G.; Aathmanesan, T. Metamaterial inspired THz antenna for breast cancer detection. SN Appl. Sci. 2019, 1, 595. [Google Scholar] [CrossRef] [Green Version]
- Geetharamani, G.; Aathmanesan, T. Split ring resonator inspired THz antenna for breast cancer detection. Opt. Laser Technol. 2020, 126, 106111. [Google Scholar] [CrossRef]
- Thakur, S.; Singh, N. Circular-slot THz antenna on PBG substrate for cancer detection. Optik 2021, 242, 167355. [Google Scholar] [CrossRef]
- Jha, M.; Samantaray, D.; Bhattacharyya, S. A THz antenna with sandwiched metasurface for quadband application. Opt. Commun. 2021, 493, 126995. [Google Scholar] [CrossRef]
- Hadda, L.; Sharma, M.; Gupta, N.; Kumar, S.; Singh, A.K. On-Demand Reconfigurable WiMAX/WLAN UWB-X Band High Isolation 2×2 MIMO Antenna for Imaging Applications. IETE J. Res. 2021, 1–13. [Google Scholar] [CrossRef]
- Hidayat, M.V.; Apriono, C. Design of 0.312 THz microstrip linear array antenna for breast cancer imaging application. In Proceedings of the 2018 International Conference on Signals and Systems (ICSigSys), Bali, Indonesia, 1–3 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 224–228. [Google Scholar] [CrossRef]
- Poorgholam-Khanjari, S.; Zarrabi, F.B.; Jarchi, S. Compact and wide-band Quasi Yagi-Uda antenna based on periodic grating ground and coupling method in terahertz regime. Optik 2019, 203, 163990. [Google Scholar] [CrossRef]
- Ghalamkari, B.; Mokhtari, N. Wide-band octagon-star fractal microstrip patch antenna for te-rahertz applications. Optik 2022, 259, 168990. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S. Design and Performance Investigation of Miniaturized Multi-Wideband Patch Antenna for Multiple Terahertz Applications. Photon Nanostruct. Fundam. Appl. 2021, 44, 100900. [Google Scholar] [CrossRef]
- Kazemi, F. High Q-factor compact and reconfigurable THz aperture antenna based on graphene loads for detecting breast cancer cells. Superlattices Microstruct. 2021, 153, 106865. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, R.; Kaur, P.; Dhasarathan, V.; Nguyen, T.K. Design and analysis of on-demand reconfigurable WiMAX / WLAN high isolation 2 × 2 MIMO antenna oriented adjacent/orthogonally for imaging applications in UWB-X band. Int. J. RF Microw. Comput. Eng. 2021, 32, e22928. [Google Scholar] [CrossRef]
- Aloui, R.; Zairi, H.; Mira, F.; Llamas-Garro, I.; Mhatli, S. Terahertz antenna based on graphene material for breast tumor detection. Sens. Bio Sens. Res. 2022, 38, 100511. [Google Scholar] [CrossRef]
- Li, W.; Ma, J.; Zhang, H.; Cheng, S.; Yang, W.; Yi, Z.; Yang, H.; Zhang, J.; Wu, X.; Wu, P. Tunable broadband absorber based on a layered resonant structure with a Dirac semimetal. Phys. Chem. Chem. Phys. 2023, 25, 8489–8496. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Wu, P.; Wang, H.; Jiang, S.; Huang, M.; Lei, D.; Wu, F. Multimode tunable terahertz absorber based on a quarter graphene disk structure. Results Phys. 2023, 48, 106420. [Google Scholar] [CrossRef]
- Ren, Y.; Tang, B. Switchable Multi-Functional VO2-Integrated Metamaterial Devices in the Terahertz Region. J. Light. Technol. 2021, 39, 5864–5868. [Google Scholar] [CrossRef]
- Aijaz, Z.; Shrivastava, S.C. Coupling effects of aperture coupled microstrip antenna. Int. J. Eng. Trends Technol. 2011, 20, 7–11. [Google Scholar]
- Islam, M.T.; Samsuzzaman, M.; Faruque, M.; Singh, M.J.; Islam, M. Microwave imaging-based breast tumor de-tection using compact wide slotted UWB patch antenna. Optoelectron. Adv. Mater. Rapid Commun. 2019, 13, 448–457. [Google Scholar]
- O’loughlin, D.; Oliveira, B.L.; Elahi, M.A.; Glavin, M.; Jones, E.; Popović, M.; O’halloran, M. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions. Sensors 2017, 17, 2823. [Google Scholar] [CrossRef] [Green Version]
- O’Loughlin, D.; Oliveira, B.L.; Santorelli, A.; Porter, E.; Glavin, M.; Jones, E.; Popovic, M.; O’Halloran, M. Sensitivity and Specificity Estimation Using Patient-Specific Microwave Imaging in Diverse Experimental Breast Phantoms. IEEE Trans. Med. Imaging 2018, 38, 303–311. [Google Scholar] [CrossRef]
- Oliveira, B.L.; O’loughlin, D.; O’halloran, M.; Porter, E.; Glavin, M.; Jones, E. Microwave Breast Imaging: Experimental tumour phantoms for the evaluation of new breast cancer diagnosis systems. Biomed. Phys. Eng. Express 2018, 4, 025036. [Google Scholar] [CrossRef]
Refs. | Type | Technique | Performance Enhancement Factor | Limitation |
---|---|---|---|---|
[7] | Photo Conductive Antenna (PCA) | Dipole with GaAs substrate | Wide spectrum (120 GHZ) and higher directivity | Not analyzed for application |
[8] | Bow-Tie structure with plasmonic gratings by etching widows in substrate | Reduce leakage current | Not analyzed for application | |
[9] | Microstrip Patch antenna | array with inset feed | improved gain and beam width | performance not evaluated for time domain response |
[10] | Graphene and reconfigurable patch | characterized for on-chip application | application based performance not evaluated | |
[16] | Array of slotted patch radiator | higher gain | Not evaluated for practical application and omnidirectional radiation pattern | |
[11] | Metamaterial | Metamaterial with defected ground | miniaturization | analyzed for breast cancer detection, only for front-to-front configuration |
[12] | CSIR loaded structure | Miniaturization and increasing the resonance frequency | time domain analysis not performed and narrow bandwidth | |
[13] | Slotted patch with PBG | Improved reflection properties | Sensitivity very low for cancer cell | |
[17] | Yagi-Uda | PBG gratings | Size reduction and bandwidth enhancement | application based performance not evaluated |
[20] | Circular radiator | 4-graphene arc loaded | Reducing Q-factor to enhance bandwidth | Low gain |
[22] | SIW | Graphene and PBG | Wider bandwidth | Sensitivity very low for cancer cell |
Parameter Name | Size (mm) | Parameter Name | Size (mm) |
---|---|---|---|
W | 3.5 | L | 3.5 |
Wp | 2 | Lp | 2 |
Wg | 0.5 | Lg | 1.5 |
Wc | 0.9 | Lc | 0.3 |
Wf | 0.2 | Lf | 2.8 |
Frequency at which |S11| is Analyzed (GHz) | |S11| on Breast Tissue without Tumor (dB) | |S11| on Breast with Tumor (dB) in Face-to-Face Configurations | |S11| on Breast with Tumor (dB) in Side-by-Side Configurations | Difference in Magnitude of |S11| with and without Tumor (Face-to-Face) | Difference in Magnitude of |S11| with and without Tumor (Side-by-Side) |
---|---|---|---|---|---|
119 | −26.5 | −20 | −22 | 6.5 dB | 4.5 dB |
130 | −18 | −21.5 | −21.5 | 3.5 dB | 3.5 dB |
Refs. | Frequency (THz) | Size | Bandwidth | Gain | Cancer Evaluation Parameter | Deviation Value |
---|---|---|---|---|---|---|
[9] | 0.312 | 1105 × 500 × 100 (µm3) | - | 6.04 dB | Not performed | - |
[11] | 1.00 | 800 nm × 800 nm | 30 GHz | 20 dBi | E-field | - |
[12] | 1.5 | 480 nm × 480 nm | 0.3 THz | 24 dBi | E-field | - |
[13] | 0.198 | 600 × 600 (µm2) | 15 GHz | 3.4 dBi | Reflection coefficient and E-field | 3 dB for 200 µm tumor |
[16] | 0.132 | 500 × 960 (µm2) | 58 GHz | 5.6 dB | Not analyzed | - |
[20] | 0.7 | 300 × 300 (µm2) | 34 GHz | 2.07 dB | Reflection coefficient and Q-factor | 7 dB |
[22] | 4.6 | - | 1.5 THz | 5 dB | Resonance Frequency and SAR | 0.0395 THz frequency deviation |
This work | 0.120 | 3.5 mm × 3.5 mm | 32 GHz | 6.38 dBi | Reflection coefficient and E-field | 7 dB for 2 mm radius tumor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Kumar, V.; Garg, D.; Alsharif, M.H.; Jahid, A. Performance Analysis of an Aperture-Coupled THz Antenna for Diagnosing Breast Cancer. Micromachines 2023, 14, 1281. https://doi.org/10.3390/mi14071281
Gupta A, Kumar V, Garg D, Alsharif MH, Jahid A. Performance Analysis of an Aperture-Coupled THz Antenna for Diagnosing Breast Cancer. Micromachines. 2023; 14(7):1281. https://doi.org/10.3390/mi14071281
Chicago/Turabian StyleGupta, Anupma, Vipan Kumar, Dinesh Garg, Mohammed H. Alsharif, and Abu Jahid. 2023. "Performance Analysis of an Aperture-Coupled THz Antenna for Diagnosing Breast Cancer" Micromachines 14, no. 7: 1281. https://doi.org/10.3390/mi14071281
APA StyleGupta, A., Kumar, V., Garg, D., Alsharif, M. H., & Jahid, A. (2023). Performance Analysis of an Aperture-Coupled THz Antenna for Diagnosing Breast Cancer. Micromachines, 14(7), 1281. https://doi.org/10.3390/mi14071281