Investigation of Parallel and Orthogonal MIMO Antennas with Two-Notched Structures for Ultra-Wideband Application
Abstract
:1. Introduction
2. Antenna Structure Design
3. Simulation Result Analysis
3.1. Notch Design and Parameter Analysis
3.2. Decoupling Design and Parameter Analysis
3.2.1. Two-Element MIMO Antenna
3.2.2. Four-Element MIMO Antenna
4. Measured Results and Analysis
4.1. S-Parameter
4.1.1. Two-Element MIMO Antenna
4.1.2. Four-Element MIMO Antenna
4.2. Radiation Pattern
4.2.1. Two-Element MIMO Antenna
4.2.2. Four-Element MIMO Antenna
4.3. MIMO Diversity Analysis
4.3.1. Envelope Correlation Coefficient (ECC)
4.3.2. Diversity Gain (DG)
4.3.3. Total Active Reflection Coefficient (TARC)
4.3.4. Mean Effective Gain (MEG)
4.3.5. Channel Capacity Loss (CCL)
4.4. Radiation Efficiency
5. Time Domain Performance Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mescia, L.; Mevoli, G.; Lamacchia, C.M.; Gallo, M.; Bia, P.; Gaetano, D.; Manna, A. sinuous antenna for UWB radar applications. Sensors 2022, 22, 248. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tian, X.W.; Song, L.Z. A ultra wideband dual-polarized antenna with high isolation degree for passive radar application. Electromagnetics 2021, 41, 409–419. [Google Scholar] [CrossRef]
- Mohammad, K.; Sajad, M.A. Radar cross-section reduction of an UWB MIMO antenna using image theory and its equivalent circuit model. Int. J. RF Microw. Comput. Aided Eng. 2021, 31, 22563. [Google Scholar] [CrossRef]
- Emadian, S.R.; Ahmadi-Shokouh, J.; Ghobadi, C.; Nourinia, J. Study on frequency and impulse response of novel triple band notched UWB antenna in indoor environments. AEU Int. J. Electron. Commun. 2018, 96, 93–106. [Google Scholar] [CrossRef]
- Martínez-Lozano, A.; Blanco-Angulo, C.; García-Martínez, H.; Gutiérrez-Mazón, R.; Torregrosa-Penalva, G.; Ávila-Navarro, E.; Sabater-Navarro, J.M. UWB-Printed rectangular-based monopole antenna for biological tissue analysis. Electronics 2021, 10, 304. [Google Scholar] [CrossRef]
- Kissi, C.; Särestöniemi, M. Receiving UWB antenna for wireless capsule endoscopy communications. Prog. Electromagn. Res. C 2020, 101, 53–69. [Google Scholar] [CrossRef]
- Zhong, Z.P.; Liang, J.J.; Fan, M.L.; Huang, G.L.; He, W.; Chen, X.C.; Yuan, T. A compact CPW-fed UWB antenna with quadruple rejected bands. Microw. Opt. Technol. Lett. 2019, 61, 2795–2800. [Google Scholar] [CrossRef]
- Iqbal, A.; Smida, A.; Mallat, N.K.; Islam, M.T.; Kim, S. A Compact UWB Antenna with Independently Controllable Notch Bands. Sensors 2019, 19, 1411. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.B.; Ding, W.H.; Chen, J.H.; Zhang, A. New ultra-wideband filter with sharp notched band using defected ground structure. Prog. Electromagn. Res. Lett. 2019, 83, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, J.Y.; Saha, C.; Sarkar, C.; Shaik, L.A.; Antar, Y. Ultra-wideband antipodal tapered slot antenna with integrated frequency-notch characteristics. IEEE Trans. Antennas Propag. 2018, 66, 1534–1539. [Google Scholar] [CrossRef]
- Luo, S.; Chen, Y.; Wang, D.; Liao, Y.; Li, Y. A monopole UWB antenna with sextuple band-notched based on SRRs and U-shaped parasitic strips. AEU Int. J. Electron. Commun. 2020, 120, 153206. [Google Scholar] [CrossRef]
- Mu, W.; Lin, H.; Wang, Z.; Li, C.; Yang, M.; Nie, W.; Wu, J. A flower-shaped miniaturized UWB-MIMO antenna with high isolation. Electronics 2022, 11, 2190. [Google Scholar] [CrossRef]
- Wang, L.L.; Du, Z.H.; Yang, H.L.; Ma, R.Y.; Zhao, Y.C.; Cui, X.Q.; Xi, X.L. Compact UWB MIMO antenna with high isolation using fence-type decoupling structure. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1641–1645. [Google Scholar] [CrossRef]
- Ren, J.; Hu, W.; Yin, Y. Compact printed MIMO antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1517–1520. [Google Scholar] [CrossRef]
- Zhang, S.; Pedersen, G.F. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 166–169. [Google Scholar] [CrossRef]
- Boumaaza, K.; Hebib, S.; Mouffok, L. Compact two-port tapered microstrip feed MIMO antenna for UWB applications. In Proceedings of the 2022 2nd International Conference on Advanced Electrical Engineering (ICAEE), Constantine, Algeria, 29–31 October 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Rekha, V.S.D.; Pardhasaradhi, P.; Madhav, B.T.P.; Devi, Y.U. Dual band notched orthogonal 4-element MIMO antenna with isolation for UWB applications. IEEE Access 2020, 8, 145871–145880. [Google Scholar] [CrossRef]
- Agarwal, S.; Rafique, U.; Ullah, R.; Ullah, S.; Khan, S.; Donelli, M. Double overt-leaf shaped CPW-Fed four port UWB MIMO antenna. Electronics 2021, 10, 3140. [Google Scholar] [CrossRef]
- Srivastava, G.; Mohan, A. Compact MIMO slot antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1057–1060. [Google Scholar] [CrossRef]
- Kumar, P.; Pathan, S.; Vincent, S.; Kumar, O.P.; Yashwanth, N.; Kumar, P.; Shetty, P.R.; Ali, T. A compact quad-port UWB MIMO antenna with improved isolation using a novel mesh-like decoupling structure and unique DGS. IEEE T. Circuits II. 2023, 70, 949–953. [Google Scholar] [CrossRef]
- Arumugam, S.; Manoharan, S.; Palaniswamy, S.K.; Kumar, S. Design and Performance Analysis of a Compact Quad-Element UWB MIMO Antenna for Automotive Communications. Electronics 2021, 10, 2184. [Google Scholar] [CrossRef]
- Kolangiammal, S.; Balaji, L.; Mahdal, M. Design of compact planar monopole UWB MIMO antenna with four orthogonal elements and tapered fed configuration for wireless diversity applications. Electronics 2022, 11, 3087. [Google Scholar] [CrossRef]
- He, Z.; Jin, J. Compact quad-port MIMO antenna with ultra-wideband and high isolation. Electronics 2022, 11, 3408. [Google Scholar] [CrossRef]
- Zhao, X.; Riaz, S.; Geng, S. A reconfigurable MIMO/UWB MIMO antenna for cognitive radio applications. IEEE Access 2019, 7, 46739–46747. [Google Scholar] [CrossRef]
- Desai, A.; Kulkarni, J.; Kamruzzaman, M.M.; Hubalovsky, S.; Hsu, H.T.; Ibrahim, A.A. Interconnected CPW Fed Flexible 4-Port MIMO Antenna for UWB, X, and Ku Band Applications. IEEE Access 2022, 10, 57641–57654. [Google Scholar] [CrossRef]
- Patel, U.; Upadhyaya, T. Four-Port Dual-Band Multiple-Input Multiple-Output Dielectric Resonator Antenna for Sub-6 GHz 5G Communication Applications. Micromachines 2022, 13, 2022. [Google Scholar] [CrossRef]
- Khan, A.A.; Jamaluddin, M.H.; Nasir, J.; Khan, R.; Aqeel, S.; Saleem, J. Owais. Design of a dual-band MIMO dielectric resonator antenna with pattern diversity for Wimax and Wlan applications. Prog. Electromagn. Res. M 2016, 50, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Rafique, U.; Agarwal, S.; Nauman, N.; Khalil, H.; Ullah, K. Inset-fed Planar Antenna Array for Dual-band 5G MIMO Applications. Prog. Electromagn. Res. C 2021, 112, 83–98. [Google Scholar] [CrossRef]
- Kulkarni, J.; Sim, C.Y.D.; Desai, A.; Holdengreber, E.; Talware, R.; Deshpande, V.; Nguyen, T.K. A Compact Four Port Ground-Coupled CPWG-Fed MIMO Antenna for Wireless Applications. Arab. J. Sci. Eng. 2022, 47, 14087–14103. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, X.; Zhan, J.; Hu, S.; Xi, Z.; Liu, Y. Compact UWB-MIMO Antenna With High Isolation and Triple Band-Notched Characteristics. IEEE Access 2019, 7, 19856–19865. [Google Scholar] [CrossRef]
- Khangarot, S.; Sravan, B.V.; Aluru, N.; Mohammadsaadh, A.W.; Poonkuzhali, R.; Kumar, O.P.; Ali, T.; Manoharapai, M.M. A compact wideband antenna with detailed time domain analysis for wireless applications. Ain Shams Eng. J. 2020, 11, 1131–1138. [Google Scholar] [CrossRef]
- Addepalli, T.; Desai, A.; Elfergani, I.; Anveshkumar, N.; Kulkarni, J.; Zebiri, C.; Rodriguez, J.; Abd-Alhameed, R. 8-Port Semi-Circular Arc MIMO Antenna with an Inverted L-Strip Loaded Connected Ground for UWB Applications. Electronics 2021, 10, 1476. [Google Scholar] [CrossRef]
- Cruz, J.D.N.; Serres, A.J.R.; de Oliveira, A.C.; Xavier, G.V.R.; de Albuquerque, C.C.R.; da Costa, E.G.; Freire, R.C.S. Bio-inspired Printed Monopole Antenna Applied to Partial Discharge Detection. Sensors 2019, 19, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.S.; Sung, C.H.; Chen, J.L.; Chen, L.S.; Houng, M.P. Isolation improvement in UWB MIMO antenna system using carbon black film. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 222–225. [Google Scholar] [CrossRef]
Parameter | TL | FL | W | H | H1 | W1 | W2 | W3 | W4 |
---|---|---|---|---|---|---|---|---|---|
Size | 38 | 68 | 68 | 1.6 | 7.6 | 9 | 16 | 4 | 11.4 |
Parameter | W5 | W6 | W7 | L1 | L2 | L3 | L4 | L5 | L6 |
Size | 8 | 1.4 | 1.5 | 3.5 | 7 | 7.2 | 5.2 | 7 | 20 |
Parameter | L7 | S1 | S2 | S3 | S4 | g | Gh | R1 | H2 |
Size | 14 | 0.3 | 0.3 | 2 | 0.6 | 1 | 12 | 12 | 11 |
Ref. | Size (mm3) (At Lowset Frequency) | Impedance Bandwidth (GHz) | Relative Bandwidth (%) | Number of Elements | Notch Band | Isolation (dB) | ECC | Gain (dBi) | Radiation Efficiency (%) |
---|---|---|---|---|---|---|---|---|---|
[12] | 0.43λ × 0.26λ × 0.023λ | 4.3–15.63 | 114 | 2 | - | 20 | <0.0075 | <5.35 | >85 |
[14] | 0.31λ × 0.31λ × 0.008λ | 2.9–12 | 122 | 2 | - | 15 | <0.02 | <4.2 | >60 |
[16] | 0.27λ × 0.26λ × 0.016λ | 2.9–12.2 | 123 | 2 | - | 17.8 | - | <3.8 | - |
[17] | 0.67λ × 0.67λ × 0.013λ | 2.1–20 | 161 | 4 | WiMAX | 25 | <0.02 | <5.8 | >80 |
[19] | 0.43λ × 0.26λ × 0.016λ | 3.2–12 | 115 | 4 | - | 22 | <0.5 | <4 | >80 |
[20] | 0.67λ × 0.67λ × 0.024λ | 4.5–16.4 | 114 | 4 | - | 20 | <0.002 | <7.8 | >61 |
[34] | 0.73λ × 0.88λ × 0.003λ | 3.89–17.09 | 126 | 4 | - | 15 | <0.02 | <6.8 | >89 |
This work | 0.57λ × 0.32λ × 0.013λ | 2.45–14.88 | 143 | 2 | WiMAX /ITU | >17 | <0.02 | <5.7 | >82 |
0.57λ × 0.57λ × 0.013λ | 2.14–14.95 | 150 | 4 | WiMAX /ITU | >20 | <0.02 | <5.9 | >80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, Z.; Zheng, H. Investigation of Parallel and Orthogonal MIMO Antennas with Two-Notched Structures for Ultra-Wideband Application. Micromachines 2023, 14, 1406. https://doi.org/10.3390/mi14071406
Wang L, Li Z, Zheng H. Investigation of Parallel and Orthogonal MIMO Antennas with Two-Notched Structures for Ultra-Wideband Application. Micromachines. 2023; 14(7):1406. https://doi.org/10.3390/mi14071406
Chicago/Turabian StyleWang, Liang, Ziwei Li, and Hongxing Zheng. 2023. "Investigation of Parallel and Orthogonal MIMO Antennas with Two-Notched Structures for Ultra-Wideband Application" Micromachines 14, no. 7: 1406. https://doi.org/10.3390/mi14071406
APA StyleWang, L., Li, Z., & Zheng, H. (2023). Investigation of Parallel and Orthogonal MIMO Antennas with Two-Notched Structures for Ultra-Wideband Application. Micromachines, 14(7), 1406. https://doi.org/10.3390/mi14071406