Two−Dimensional Planar Penta−NiPN with Ultrahigh Carrier Mobility and Its Potential Application in NO and NO2 Gas Sensing
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Structure and Stability
3.2. Electronic Structure
3.3. Gas Adsorption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamom, J.; Ratanadecho, P.; Mingmalairak, C.; Rungroungdouyboon, B. Humidity−Sensing Mattress for Long−Term Bedridden Patients with Incontinence−Associated Dermatitis. Micromachines 2023, 14, 1178. [Google Scholar] [CrossRef] [PubMed]
- Marti, E.; De Miguel, M.A.; Garcia, F.; Perez, J. A Review of Sensor Technologies for Perception in Automated Driving. IEEE Intell. Transp. Syst. Mag. 2019, 11, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, D.; Wang, H.; Huang, W.; Hu, L.; Tang, Y.; Guo, Z.; Ouyang, Z.; Zhang, H. Recent Advances in Two−Dimensional−Material−Based Sensing Technology toward Health and Environmental Monitoring Applications. Nanoscale 2020, 12, 3535–3559. [Google Scholar] [CrossRef]
- Zhang, L.; Khan, K.; Zou, J.; Zhang, H.; Li, Y. Recent Advances in Emerging 2D Material-Based Gas Sensors: Potential in Disease Diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329. [Google Scholar] [CrossRef]
- Buckley, D.J.; Black, N.C.G.; Castanon, E.G.; Melios, C.; Hardman, M.; Kazakova, O. Frontiers of Graphene and 2D Material−Based Gas Sensors for Environmental Monitoring. 2D Mater. 2020, 7, 032002. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, C.; Wei, S. Gas Sensing in 2D Materials. Appl. Phys. Rev. 2017, 4, 021304. [Google Scholar] [CrossRef]
- Ou, J.Z.; Ge, W.; Carey, B.; Daeneke, T.; Rotbart, A.; Shan, W.; Wang, Y.; Fu, Z.; Chrimes, A.F.; Wlodarski, W.; et al. Physisorption−Based Charge Transfer in Two−Dimensional SnS2 for Selective and Reversible NO2 Gas Sensing. ACS Nano 2015, 9, 10313–10323. [Google Scholar] [CrossRef]
- Qin, Z.; Song, X.; Wang, J.; Li, X.; Wu, C.; Wang, X.; Yin, X.; Zeng, D. Development of Flexible Paper Substrate Sensor Based on 2D WS2 with S Defects for Room−Temperature NH3 Gas Sensing. Appl. Surf. Sci. 2022, 573, 151535. [Google Scholar] [CrossRef]
- Liu, X.; Ma, T.; Pinna, N.; Zhang, J. Two−Dimensional Nanostructured Materials for Gas Sensing. Adv. Funct. Mater. 2017, 27, 1702168. [Google Scholar] [CrossRef]
- Thomas, S.; Asle Zaeem, M. Superior Sensing Performance of Two−Dimensional Ruthenium Carbide (2D−RuC) in Detection of NO, NO2 and NH3 Gas Molecules. Appl. Surf. Sci. 2021, 563, 150232. [Google Scholar] [CrossRef]
- Hakimi Raad, N.; Manavizadeh, N.; Frank, I.; Nadimi, E. Gas Sensing Properties of a Two−Dimensional Graphene/h−BN Multi−Heterostructure toward H2O, NH3 and NO2: A First Principles Study. Appl. Surf. Sci. 2021, 565, 150454. [Google Scholar] [CrossRef]
- Aasi, A.; Mortazavi, B.; Panchapakesan, B. Two−Dimensional PdPS and PdPSe Nanosheets: Novel Promising Sensing Platforms for Harmful Gas Molecules. Appl. Surf. Sci. 2022, 579, 152115. [Google Scholar] [CrossRef]
- Bykov, M.; Bykova, E.; Ponomareva, A.V.; Tasnádi, F.; Chariton, S.; Prakapenka, V.B.; Glazyrin, K.; Smith, J.S.; Mahmood, M.F.; Abrikosov, I.A.; et al. Realization of an Ideal Cairo Tessellation in Nickel Diazenide NiN2: High−Pressure Route to Pentagonal 2D Materials. ACS Nano 2021, 15, 13539–13546. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black Phosphorus Field−Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.-H.; Song, Y.-Q.; Chen, Q.; Xue, K.-H.; Miao, X.-S. Single−Layer Planar Penta−X2N4 (X = Ni, Pd and Pt) as Direct−Bandgap Semiconductors from First Principle Calculations. Appl. Surf. Sci. 2019, 469, 456–462. [Google Scholar] [CrossRef]
- Mortazavi, B.; Zhuang, X.; Rabczuk, T.; Shapeev, A.V. Outstanding Thermal Conductivity and Mechanical Properties in the Direct Gap Semiconducting Penta−NiN2 Monolayer Confirmed by First−Principles. Phys. E Low−Dimens. Syst. Nanostructures 2022, 140, 115221. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, X.; Yang, Y.; Xiao, W.; Zhou, X.; Wang, D.; Wang, G.; Bi, J.; Luo, Z.; Liu, X. Coordination Engineering on Novel 2D Pentagonal NiN2 for Bifunctional Oxygen Electrocatalysts. Appl. Surf. Sci. 2023, 614, 156256. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, J.; Shen, Y.; Kang, W.; Wang, Q. Effect of High Order Phonon Scattering on the Thermal Conductivity and Its Response to Strain of a Penta−NiN2 Sheet. J. Phys. Chem. Lett. 2022, 13, 5734–5741. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, X.-F. Adsorption Behaviors of Small Molecules on Two−Dimensional Penta−NiN2 Layers: Implications for NO and NO2 Gas Sensors. ACS Appl. Nano Mater. 2023, 6, 6151–6160. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Zhang, B.; Song, Y.-Q.; Wang, J.-F.; Xue, K.-H.; Miao, X.-S. Planar Penta−Transition Metal Phosphide and Arsenide as Narrow−Gap Semiconductors with Ultrahigh Carrier Mobility. J. Mater. Sci. 2019, 54, 7035–7047. [Google Scholar] [CrossRef] [Green Version]
- Qian, S.; Sheng, X.; Xu, X.; Wu, Y.; Lu, N.; Qin, Z.; Wang, J.; Zhang, C.; Feng, E.; Huang, W.; et al. Penta−MX2 (M = Ni, Pd and Pt; X = P and As) Monolayers: Direct Band−Gap Semiconductors with High Carrier Mobility. J. Mater. Chem. C 2019, 7, 3569–3575. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Sun, J.; Sun, R.; Wang, Z.F.; Yang, J. Penta−Pt2N4: An Ideal Two−Dimensional Material for Nanoelectronics. Nanoscale 2018, 10, 16169–16177. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Liu, X.; Zhao, X.; Wang, J.; Zhang, X.; Zhao, M. Electronic Properties of a π−Conjugated Cairo Pentagonal Lattice: Direct Band Gap, Ultrahigh Carrier Mobility, and Slanted Dirac Cones. Phys. Rev. B 2018, 98, 085437. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Sun, L.; Ma, X.; Feng, X.; Gao, H.; Ding, C.; Zhao, M. Multiple Dirac Cones and Lifshitz Transition in a Two−Dimensional Cairo Lattice as a Hawking Evaporation Analogue. J. Phys. Condens. Matter 2021, 33, 365001. [Google Scholar] [CrossRef]
- Raval, D.; Gupta, S.K.; Gajjar, P.N. Detection of H2S, HF and H2 Pollutant Gases on the Surface of Penta−PdAs2 Monolayer Using DFT Approach. Sci. Rep. 2023, 13, 699. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xiong, S.; Xia, F.; Shao, Z.; Zhao, J.; Zhang, X.; Jie, J.; Zhang, X. Tuning the Electronic Transport Anisotropy in α−Phase Phosphorene through Superlattice Design. Phys. Rev. B 2018, 97, 085119. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total−Energy Calculations Using a Plane−Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab−Initio Total Energy Calculations for Metals and Semiconductors Using a Plane−Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self−Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin−Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA−Type Density Functional Constructed with a Long−Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Togo, A.; Oba, F.; Tanaka, I. First−Principles Calculations of the Ferroelastic Transition between Rutile−Type and CaCl2−Type SiO2 at High Pressures. Phys. Rev. B 2008, 78, 134106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, Z.-F.; Gao, P.-F.; Fang, D.-Q.; Zhang, E.-H.; Zhang, S.-L. Structural, Elastic, Electronic, and Optical Properties of the Tricycle−like Phosphorene. Phys. Chem. Chem. Phys. 2017, 19, 2245–2251. [Google Scholar] [CrossRef]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Clarendon Press: Oxford, UK, 1954. [Google Scholar]
- Yuan, J.-H.; Xue, K.-H.; Wang, J.-F.; Miao, X.-S. Gallium Thiophosphate: An Emerging Bidirectional Auxetic Two−Dimensional Crystal with Wide Direct Band Gap. J. Phys. Chem. Lett. 2019, 10, 4455–4462. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Savin, A.; Jepsen, O.; Flad, J.; Andersen, O.K.; Preuss, H.; von Schnering, H.G. Electron Localization in Solid−State Structures of the Elements: The Diamond Structure. Angew. Chem. Int. Ed. Engl. 1992, 31, 187–188. [Google Scholar] [CrossRef]
- Tang, W.; Sanville, E.; Henkelman, G. A Grid−Based Bader Analysis Algorithm without Lattice Bias. J. Phys. Condens. Matter 2009, 21, 084204. [Google Scholar] [CrossRef]
- Bardeen, J.; Shockley, W. Deformation Potentials and Mobilities in Non−Polar Crystals. Phys. Rev. 1950, 80, 72–80. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xue, K.-H.; Miao, X. Two−Dimensional ABC3 (A = Sc, Y; B = Al, Ga, In; C = S, Se, Te) with Intrinsic Electric Field for Photocatalytic Water Splitting. Int. J. Hydrog. Energy 2023, 48, 5929–5939. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xue, K.-H.; Wang, J.; Miao, X. Designing Stable 2D Materials Solely from VIA Elements. Appl. Phys. Lett. 2021, 119, 223101. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, G.; Zhang, Y.-W. Polarity−Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons. J. Am. Chem. Soc. 2014, 136, 6269–6275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, Y.; Ma, Y.; Li, Y.; Heine, T. GeP3: A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement. Nano Lett. 2017, 17, 1833–1838. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.-W.; Park, H.S. Negative Poisson’s Ratio in Single−Layer Black Phosphorus. Nat. Commun. 2014, 5, 4727. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.-Q.; Chen, Q.; Yang, K.; Huang, W.-Q.; Hu, W.-Y.; Huang, G.-F. Penta−Graphene as a Potential Gas Sensor for NOx Detection. Nanoscale Res. Lett. 2019, 14, 306. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Dou, X.; Zhao, L.; Du, J.; Jiang, G. Monolayer Penta−BCN: A Promising Candidate for Harmful Gases Detection. Sens. Actuators Phys. 2022, 334, 113326. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, G.; Yi, W.; Yang, T.; Liu, X. Penta−BeP2 Monolayer: A Superior Sensor for Detecting Toxic Gases in the Air with Excellent Sensitivity, Selectivity, and Reversibility. ACS Appl. Mater. Interfaces 2022, 14, 35229–35236. [Google Scholar] [CrossRef] [PubMed]
Materials | a (Å) | b (Å) | lNi−N (Å) | lNi−P (Å) | lN−N/lN−P/lP−P (Å) | Ecoh (eV) | Eg (eV) |
---|---|---|---|---|---|---|---|
NiPN NiN2 [17] NiP2 [22] | 4.995 4.53 5.55 | 5.011 4.53 5.55 | 1.929, 1.910 1.88 −− | 2.125, 2.107 −− 2.16 | 1.605 1.24 2.11 | 4.55 4.98 4.09 | 1.237 1.10 0.81 |
Materials | Carrier Type | ma* | mb* | |Ela| | |Elb| | Ca2D | Cb2D | μa2D | μb2D |
---|---|---|---|---|---|---|---|---|---|
NiPN | Electron | 0.38 | 0.36 | 2.10 | 0.85 | 147.68 | 146.24 | 0.51 | 3.24 |
Hole | 0.22 | 0.24 | 0.74 | 0.99 | 147.68 | 146.24 | 11.36 | 5.76 | |
NiP2 [22] | Electron | 0.106 | 0.140 | 5.23 | 5.23 | 118.19 | 118.19 | 0.71 | 0.54 |
Hole | 0.119 | 0.170 | 1.53 | 1.53 | 118.19 | 118.19 | 6.35 | 4.45 |
Gas Molecules | Ea (eV) | d (Å) | Q (e) | |
---|---|---|---|---|
CO CO2 CH4 H2 H2O H2S N2 NO NO2 NH3 SO2 | −0.640 −0.184 −0.162 −0.072 −0.272 −0.316 −0.100 −0.751 −1.011 −0.545 −0.445 | 1.834 3.054 2.661 2.613 2.248 2.210 3.117 1.862 2.065 2.119 2.573 | 0 0 0 0 0 0 0 0.695 0.878 0 0 | +0.100 +0.026 +0.010 +0.011 +0.025 −0.100 +0.015 +0.216 +0.553 −0.103 +0.187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Li, G.; Yuan, J.-H.; Wang, J.; Zhang, P.; Shan, Y. Two−Dimensional Planar Penta−NiPN with Ultrahigh Carrier Mobility and Its Potential Application in NO and NO2 Gas Sensing. Micromachines 2023, 14, 1407. https://doi.org/10.3390/mi14071407
Wang H, Li G, Yuan J-H, Wang J, Zhang P, Shan Y. Two−Dimensional Planar Penta−NiPN with Ultrahigh Carrier Mobility and Its Potential Application in NO and NO2 Gas Sensing. Micromachines. 2023; 14(7):1407. https://doi.org/10.3390/mi14071407
Chicago/Turabian StyleWang, Hao, Gang Li, Jun-Hui Yuan, Jiafu Wang, Pan Zhang, and Yahui Shan. 2023. "Two−Dimensional Planar Penta−NiPN with Ultrahigh Carrier Mobility and Its Potential Application in NO and NO2 Gas Sensing" Micromachines 14, no. 7: 1407. https://doi.org/10.3390/mi14071407
APA StyleWang, H., Li, G., Yuan, J. -H., Wang, J., Zhang, P., & Shan, Y. (2023). Two−Dimensional Planar Penta−NiPN with Ultrahigh Carrier Mobility and Its Potential Application in NO and NO2 Gas Sensing. Micromachines, 14(7), 1407. https://doi.org/10.3390/mi14071407