Influence of Gate Geometry on the Characteristics of AlGaN/GaN Nanochannel HEMTs for High-Linearity Applications
Abstract
:1. Introduction
2. Device Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mishra, U.K.; Likun, S.; Kazior, T.E.; Wu, Y.-F. GaN-Based RF Power Devices and Amplifiers. Proc. IEEE 2008, 96, 287–305. [Google Scholar] [CrossRef]
- Shinohara, K.; Regan, D.C.; Tang, Y.; Corrion, A.L.; Brown, D.F.; Wong, J.C.; Robinson, J.F.; Fung, H.H.; Schmitz, A.; Oh, T.C.; et al. Scaling of GaN HEMTs and Schottky Diodes for Submillimeter-Wave MMIC Applications. IEEE Trans. Electron Devices 2013, 60, 2982–2996. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, M.; Yang, L.; Hou, B.; Yu, Q.; Li, S.; Shi, C.; Zhao, W.; Lu, H.; Chen, W.; et al. First Demonstration of State-of-the-art GaN HEMTs for Power and RF Applications on A Unified Platform with Free-standing GaN Substrate and Fe/C Co-doped Buffer. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 11.3.1–11.3.4. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, L.; Ma, X.; Ma, J.; Cao, M.; Pan, C.; Wang, C.; Zhang, J. High-Performance Microwave Gate-Recessed AlGaN/AlN/GaN MOS-HEMT with 73% Power-Added Efficiency. IEEE Electron Device Lett. 2011, 32, 626–628. [Google Scholar] [CrossRef]
- Schuh, P.; Sledzik, H.; Reber, R.; Fleckenstein, A.; Leberer, R.; Oppermann, M.; Quay, R.; van Raay, F.; Seelmann-Eggebert, M.; Kiefer, R.; et al. GaN MMIC based T/R-Module Front-End for X-Band Applications. In Proceedings of the EMICC, Amsterdam, The Netherlands, 27–28 October 2008; pp. 274–277. [Google Scholar] [CrossRef]
- Lu, H.; Hou, B.; Yang, L.; Zhang, M.; Deng, L.; Wu, M.; Si, Z.; Huang, S.; Ma, X.; Hao, Y. High RF Performance GaN-on-Si HEMTs with Passivation Implanted Termination. IEEE Electron. Device Lett. 2021, 43, 188–191. [Google Scholar] [CrossRef]
- Palacios, T.; Rajan, S.; Chakraborty, A.; Heikman, S.; Keller, S.; DenBaars, S.; Mishra, U. Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs. IEEE Trans. Electron. Devices 2005, 52, 2117–2123. [Google Scholar] [CrossRef]
- Joglekar, S.; Radhakrishna, U.; Piedra, D.; Antoniadis, D.; Palacios, T. Large signal linearity enhancement of AlGaN/GaN high electron mobility transistors by device-level Vt engineering for transconductance compensation. In Proceedings of the IEDM, San Francisco, CA, USA, 2–6 December 2017; pp. 25.3.1–25.3.4. [Google Scholar] [CrossRef]
- Sohel, S.H.; Rahman, M.W.; Xie, A.; Beam, E.; Cui, Y.; Kruzich, M.; Xue, H.; Razzak, T.; Bajaj, S.; Cao, Y.; et al. Linearity Improvement with AlGaN Polarization-Graded Field Effect Transistors with Low Pressure Chemical Vapor Deposition Grown SiNx Passivation. IEEE Electron. Device Lett. 2019, 41, 19–22. [Google Scholar] [CrossRef]
- Yu, Q.; Shi, C.; Yang, L.; Lu, H.; Zhang, M.; Wu, M.; Hou, B.; Jia, F.; Guo, F.; Ma, X.; et al. High Current and Linearity AlGaN/GaN/-Graded-AlGaN:Si-doped/GaN Heterostructure for Low Voltage Power Amplifier Application. IEEE Electron. Device Lett. 2023, 44, 582–585. [Google Scholar] [CrossRef]
- Lu, H.; Hou, B.; Yang, L.; Niu, X.; Si, Z.; Zhang, M.; Wu, M.; Mi, M.; Zhu, Q.; Cheng, K.; et al. AlN/GaN/InGaN Coupling-Channel HEMTs for Improved gm and Gain Linearity. IEEE Trans. Electron. Devices 2021, 68, 3308–3313. [Google Scholar] [CrossRef]
- Shrestha, P.; Guidry, M.; Romanczyk, B.; Hatui, N.; Wurm, C.; Krishna, A.; Pasayat, S.S.; Karnaty, R.R.; Keller, S.; Buckwalter, J.F.; et al. High Linearity and High Gain Performance of N-Polar GaN MIS-HEMT at 30 GHz. IEEE Electron. Device Lett. 2020, 41, 681–684. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.-H.; Yang, L.; Mi, M.; Hou, B.; He, Y.; Wu, S.; Lu, Y.; Zhang, H.-S.; Zhu, Q.; et al. Influence of Fin Configuration on the Characteristics of AlGaN/GaN Fin-HEMTs. IEEE Trans. Electron. Devices 2018, 65, 1745–1752. [Google Scholar] [CrossRef]
- Arulkumaran, S.; Ng, G.I.; Kumar, C.M.M.; Ranjan, K.; Teo, K.L.; Shoron, O.F.; Rajan, S.; Bin Dolmanan, S.; Tripathy, S. Electron velocity of 6 × 107 cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors. Appl. Phys. Lett. 2015, 106, 053502. [Google Scholar] [CrossRef]
- Wu, M.; Ma, X.H.; Yang, L.; Zhang, M.; Zhu, Q.; Zhang, X.C.; Hao, Y. Investigation of the nanochannel geometry modulation on self-heating in AlGaN/GaN Fin-HEMTs on Si. Appl. Phys. Lett. 2019, 115, 083505. [Google Scholar] [CrossRef]
- Dai, Q.; Son, D.-H.; Yoon, Y.-J.; Kim, J.-G.; Jin, X.; Kang, I.-M.; Kim, D.-H.; Xu, Y.; Cristoloveanu, S.; Lee, J.-H. Deep Sub-60 mV/decade Subthreshold Swing in AlGaN/GaN FinMISHFETs with M-Plane Sidewall Channel. IEEE Trans. Electron. Devices 2019, 66, 1699–1703. [Google Scholar] [CrossRef]
- Ma, J.; Erine, C.; Xiang, P.; Cheng, K.; Matioli, E. Multi-channel tri-gate normally-on/off AlGaN/GaN MOSHEMTs on Si substrate with high breakdown voltage and low ON-resistance. Appl. Phys. Lett. 2018, 113, 242102. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhai, S.; Mi, M.; Zhou, X.; Zheng, X.; Zhang, M.; Yang, L.; Wang, C.; Ma, X.; Hao, Y. A physics-based threshold voltage model of AlGaN/GaN nanowire channel high electron mobility transistor. Phys. Status Solidi 2016, 214, 1600504. [Google Scholar] [CrossRef]
- Choi, W.; Balasubramanian, V.; Asbeck, P.M.; Dayeh, S.A. Linearity by Synthesis: An Intrinsically Linear AlGaN/GaN-on-Si Transistor with OIP3/(F-1)PDC of 10.1 at 30 GHz. In Proceedings of the 2020 Device Research Conference (DRC), Columbus, OH, USA, 21–24 June 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Mi, M.; Wu, S.; Zhang, M.; Yang, L.; Hou, B.; Zhao, Z.; Guo, L.; Zheng, X.; Ma, X.-H.; Hao, Y. Improving the transconductance flatness of InAlN/GaN HEMT by modulating VT along the gate width. Appl. Phys. Express 2019, 12, 114001. [Google Scholar] [CrossRef]
- Zhang, K.; Kong, Y.; Zhu, G.; Zhou, J.; Yu, X.; Kong, C.; Li, Z.; Chen, T. High-Linearity AlGaN/GaN FinFETs for Microwave Power Applications. IEEE Electron. Device Lett. 2017, 38, 615–618. [Google Scholar] [CrossRef]
- Zheng, Z.; Song, W.; Lei, J.; Qian, Q.; Wei, J.; Hua, M.; Yang, S.; Zhang, L.; Chen, K.J. GaN HEMT with Convergent Channel for Low Intrinsic Knee Voltage. IEEE Electron. Device Lett. 2020, 41, 1304–1307. [Google Scholar] [CrossRef]
- Shinohara, K.; King, C.; Carter, A.D.; Regan, E.J.; Arias, A.; Bergman, J.; Urteaga, M.; Brar, B. GaN-Based Field-Effect Transistors with Laterally Gated Two-Dimensional Electron Gas. IEEE Electron. Device Lett. 2018, 39, 417–420. [Google Scholar] [CrossRef]
- Odabasi, O.; Yilmaz, D.; Aras, E.; Asan, K.E.; Zafar, S.; Akoglu, B.C.; Butun, B.; Ozbay, E. AlGaN/GaN-Based Laterally Gated High-Electron-Mobility Transistors with Optimized Linearity. IEEE Trans. Electron. Devices 2021, 68, 1016–1023. [Google Scholar] [CrossRef]
- Shinohara, K.; King, C.; Regan, E.J.; Bergman, J.; Carter, A.D.; Arias, A.; Urteaga, M.; Brar, B.; Page, R.; Chaudhuri, R.; et al. GaN-Based Multi-Channel Transistors with Lateral Gate for Linear and Efficient Millimeter-Wave Power Amplifiers. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 1133–1135. [Google Scholar] [CrossRef]
- Shinohara, K.; King, C.; Regan, D.; Regan, E.; Carter, A.; Arias, A.; Bergman, J.; Urteaga, M.; Brar, B.; Cao, Y.; et al. Multi-channel Schottky-gate BRIDGE HEMT Technology for Millimeter-Wave Power Amplifier Applications. In Proceedings of the 2022 IEEE/MTT-S International Microwave Symposium-IMS 2022, Denver, CO, USA, 19–24 June 2022; pp. 298–301. [Google Scholar] [CrossRef]
- Nagamatsu, K.A.; Afroz, S.; Gupta, S.; Wanis, S.; Hartman, J.; Stewart, E.J.; Shea, P.; Renaldo, K.; Howell, R.S.; Novak, B.; et al. Second Generation SLCFET Amplifier: Improved FT/FMAX and Noise Performance. In Proceedings of the 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS), Nashville, TN, USA, 3–6 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Azize, M.; Palacios, T. Top-down fabrication of AlGaN/GaN nanoribbons. Appl. Phys. Lett. 2011, 98, 042103. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.; Mi, M.; Yang, L.; Wu, S.; Hou, B.; Zhu, Q.; Zhang, H.; Wu, M.; Hao, Y. Influence of fin width and gate structure on the performance of AlGaN/GaN fin-shaped HEMTs. Int. J. Numer. Model. Electron. Netw. Devices Fields 2019, 33, e2641. [Google Scholar] [CrossRef]
- For ATLAS Users’ Manual-Device Simulation Software, Silvaco. Available online: http://www.silvaco.com/products/tcad/device_simulation/atlas/atlas.html (accessed on 10 June 2018).
- Rinke, P.; Winkelnkemper, M.; Qteish, A.; Bimberg, D.; Neugebauer, J.; Scheffler, M. Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN. Phys. Rev. B 2008, 77, 075202. [Google Scholar] [CrossRef] [Green Version]
- Ambacher, O.; Foutz, B.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Sierakowski, A.J.; Schaff, W.J.; Eastman, L.F.; et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 2000, 87, 334–344. [Google Scholar] [CrossRef]
- Zhang, B.J.; Egawa, T.; Zhao, G.Y.; Ishikawa, H.; Umeno, M.; Jimbo, T. Schottky diodes of Ni/Au on n-GaN grown on sapphire and SiC substrates. Appl. Phys. Lett. 2001, 79, 2567–2569. [Google Scholar] [CrossRef]
- Bisi, D.; Meneghini, M.; de Santi, C.; Chini, A.; Dammann, M.; Bruckner, P.; Mikulla, M.; Meneghesso, G.; Zanoni, E.; Bisi, D.; et al. Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements. IEEE Trans. Electron. Devices 2013, 60, 3166–31753. [Google Scholar] [CrossRef]
- Ibbetson, J.P.; Fini, P.T.; Ness, K.D.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 2000, 77, 250–252. [Google Scholar] [CrossRef]
- Joshi, V.; Tiwari, S.P.; Shrivastava, M. Part I: Physical Insight into Carbon-Doping-Induced Delayed Avalanche Action in GaN Buffer in AlGaN/GaN HEMTs. IEEE Trans. Electron. Devices 2019, 66, 561–569. [Google Scholar] [CrossRef]
- Maas, S.A. Nonlinear Microwave and RF Circuits; Artech House: Norwood, MA, USA, 1997. [Google Scholar]
GaN | AlN | Al0.23Ga0.77N | |
---|---|---|---|
Eg (300 K) (eV) | 3.42 | 6.28 | 4.08 |
m║ * | 0.18 | 0.25 | 0.20 |
m┴ * | 0.20 | 0.33 | 0.23 |
e33 (C/m2) | 0.73 | 1.46 | 0.90 |
e31 (C/m2) | −0.49 | −0.60 | −0.51 |
a0 (Å) | 3.189 | 3.112 | 3.171 |
c0 (Å) | 5.185 | 4.982 | 5.138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Chen, Y.; Guo, S.; Lu, H.; Zhu, Q.; Mi, M.; Wu, M.; Hou, B.; Yang, L.; Ma, X.; et al. Influence of Gate Geometry on the Characteristics of AlGaN/GaN Nanochannel HEMTs for High-Linearity Applications. Micromachines 2023, 14, 1513. https://doi.org/10.3390/mi14081513
Zhang M, Chen Y, Guo S, Lu H, Zhu Q, Mi M, Wu M, Hou B, Yang L, Ma X, et al. Influence of Gate Geometry on the Characteristics of AlGaN/GaN Nanochannel HEMTs for High-Linearity Applications. Micromachines. 2023; 14(8):1513. https://doi.org/10.3390/mi14081513
Chicago/Turabian StyleZhang, Meng, Yilin Chen, Siyin Guo, Hao Lu, Qing Zhu, Minhan Mi, Mei Wu, Bin Hou, Ling Yang, Xiaohua Ma, and et al. 2023. "Influence of Gate Geometry on the Characteristics of AlGaN/GaN Nanochannel HEMTs for High-Linearity Applications" Micromachines 14, no. 8: 1513. https://doi.org/10.3390/mi14081513
APA StyleZhang, M., Chen, Y., Guo, S., Lu, H., Zhu, Q., Mi, M., Wu, M., Hou, B., Yang, L., Ma, X., & Hao, Y. (2023). Influence of Gate Geometry on the Characteristics of AlGaN/GaN Nanochannel HEMTs for High-Linearity Applications. Micromachines, 14(8), 1513. https://doi.org/10.3390/mi14081513