Structural Design of MEMS Acceleration Sensor Based on PZT Plate Capacitance Detection
Abstract
:1. Introduction
- (1)
- The occurrence of the overload signal
- (2)
- The way the overload signal is processed and discriminated.
2. Design Principle
2.1. Three-Dimensional Acceleration Numerical Simulation of Projectile Penetration into a Multilayer Concrete Target
2.2. Principle of Capacitance Sensor Measurement
3. COMSOL Finite Element Simulation
3.1. COMSOL Mode Simulation
3.2. Impact Simulation of Double-Layer Capacitive Accelerometer
4. Process Design of the Plate Capacitive Accelerometer
5. Experiment and Analysis
5.1. Machette Hammer Impact Experiment
5.2. Data Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, R.; Li, K.; Xu, X.; Shen, C.; Shi, Y.; Cao, H. Design and experiment of MEMS solid-state wave gyroscope quadrature error correction system. IEEE Sens. J. 2023, 23, 16645–16655. [Google Scholar] [CrossRef]
- Ning, J.; Ren, H.; Li, Z.; Xu, X. A mass abrasion model with the melting and cutting mechanisms during high-speed projectile penetration into concrete slabs. Acta Mech. Sin. 2022, 38, 121597. [Google Scholar] [CrossRef]
- Tusnio, J. An Electronic Time Fuze with an Overload-Time Protection Device. Prz. Elektrotech. 2010, 86, 214–217. [Google Scholar]
- Peng, Y.; Wu, H.; Fang, Q.; Gong, Z. Deceleration time of projectile penetration/perforation into a concrete target: Experiment and discussions. Adv. Struct. Eng. 2019, 22, 112–125. [Google Scholar] [CrossRef]
- Tais, A.S.; Ibraheem, O.F.; Raoof, S.M. Effect of Thickness and Reinforcement on Concrete Plates under High Speed Projectiles. Struct. Eng. Mech. 2022, 82, 587–594. [Google Scholar] [CrossRef]
- Gerami, N.D.; Khazraiyan, N. Evaluation of semi-analytical model for rigid projectile penetration into concrete/metal targets. Struct. Concr. 2020, 21, 117–128. [Google Scholar] [CrossRef]
- Feldgun, V.; Yankelevsky, D.; Karinski, Y. New method for predicting perforation parameters of a concrete slab target to a penetrating projectile. Int. J. Impact Eng. 2023, 174, 104512. [Google Scholar] [CrossRef]
- Xu, L.-Y.; Cai, F.; Xue, Y.-Y.; Takahashi, C.; Li, Y.-Y. Numerical Analyses of Local Damage of Concrete Slabs by Normal Impact of Deformable Solid Projectiles. KSCE J. Civ. Eng. 2019, 23, 5121–5132. [Google Scholar] [CrossRef]
- Meng, Q. Numerical Simulation of Multifunctional Projectile Penetrating Reinforced Concrete Target Plate Based on Sensor Data Acquisition. J. Sens. 2022, 2022, 3115123. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Li, Y.-C.; Shen, R.; Wang, J. Numerical study on craters and penetration of concrete slab by ogive-nose steel projectile. Comput. Geotech. 2007, 34, 1–9. [Google Scholar] [CrossRef]
- Ye, S.; Xu, Y.; Zhou, Y.; Cheng, J.; Huang, J.; Cai, Y.; Yao, X.; Luo, S. Penetration dynamics of steel spheres into a ballistic gelatin: Experiments, nondimensional analysis, and finite element modeling. Int. J. Impact Eng. 2022, 162, 104144. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, X.; Liu, C.; Wang, W. Penetration performance of axisymmetric U-shape-nose grooved projectile into aluminum target: Theoretical model and experiment. Lat. Am. J. Solids Struct. 2018, 15. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.Z.; Wu, H.; Fang, Q.; Zhang, W.; Xiao, Y.K. Projectile penetration into mortar targets with a broad range of striking velocities: Test and analyses. Int. J. Impact Eng. 2017, 106, 18–29. [Google Scholar] [CrossRef]
- Wang, R.; Tang, E.; Yang, G.; Gao, G.; Wang, L. Research on layer-counting experimental simulation system for projectile penetrating multi-layered targets. Measurement 2020, 151, 107108. [Google Scholar] [CrossRef]
- Koh, H.S.; Shin, D.Y.; Yoon, G.H. The role of granular buoyant force of projectile in determining the penetration depth. Int. J. Impact Eng. 2022, 166, 104238. [Google Scholar] [CrossRef]
- Furubayashi, Y.; Oshima, T.; Yamawaki, T.; Watanabe, K.; Mori, K.; Mori, N.; Matsumoto, A.; Kamada, Y.; Isobe, A.; Sekiguchi, T. A 22-Ng/Root Hz 17-MW Capacitive MEMS Accelerometer with Electrically Separated Mass Structure and Digital Noise-Reduction Techniques. IEEE J. Solid-State Circuits 2020, 55, 2539–2552. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, J.; Jiao, J.; Zhao, R.; Cao, H. Calibration Analysis of High-G MEMS Accelerometer Sensor Based on Wavelet and Wavelet Packet Denoising. Sensors 2021, 21, 1231. [Google Scholar] [CrossRef]
- Li, X.; Hu, J.; Liu, X. A High-Performance Digital Interface Circuit for a High-Q Micro-Electromechanical System Accelerometer. Micromachines 2018, 9, 675. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shi, Y.; Cao, H.; Zhao, S.; Zhao, Y.; Wang, Y.; Zhao, R.; Hou, X.; He, J.; Chou, X. Design and Implementation of a Novel Membrane-Island Structured MEMS Accelerometer with an Ultra-High Range. IEEE Sens. J. 2022, 22, 20246–20256. [Google Scholar] [CrossRef]
- Cai, P.; Xiong, X.; Wang, K.; Wang, J.; Zou, X. An Improved Difference Temperature Compensation Method for MEMS Resonant Accelerometers. Micromachines 2021, 12, 1022. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, Y.; Feng, H.; Cao, H.; Tang, J.; Li, J.; Zhao, R.; Liu, J. Design, fabrication and calibration of a high-G MEMS accelerometer. Sens. Actuators A Phys. 2018, 279, 733–742. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Feng, H.; Zhao, R.; Cao, H.; Liu, J. Design, Fabrication and Test of a Low Range Capacitive Accelerometer with Anti-Overload Characteristics. IEEE Access 2020, 8, 26085–26093. [Google Scholar] [CrossRef]
- Guo, C.; Shi, Y.; Cao, H.; Wen, X.; Zhao, R. Dynamic parameter identification of a high g accelerometer based on BP-PSO algorithm. Sens. Actuators A Phys. 2023, 349, 114024. [Google Scholar] [CrossRef]
- Duan, C.; Jiang, Y.; Chen, L.; Tai, H.; He, Y. Design and Development of MEMS Capacitive Large-Scale Strain Sensors. Integr. Ferroelectr. 2013, 147, 123–130. [Google Scholar] [CrossRef]
- Almutairi, B.; Alshehri, A.; Kraft, M. Design and Implementation of a MASH2-0 Electromechanical Sigma–Delta Modulator for Capacitive MEMS Sensors Using Dual Quantization Method. J. Microelectromech. Syst. 2015, 24, 1251–1263. [Google Scholar] [CrossRef]
- Lu, Q.; Shen, C.; Cao, H.; Shi, Y.; Liu, J. Fusion Algorithm-Based Temperature Compensation Method for High-G MEMS Accelerometer. Shock. Vib. 2019, 2019, 3154845. [Google Scholar] [CrossRef]
- Lu, Q.; Pang, L.; Huang, H.; Shen, C.; Cao, H.; Shi, Y.; Liu, J. High-G Calibration Denoising Method for High-G MEMS Accelerometer Based on EMD and Wavelet Threshold. Micromachines 2019, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Yang, H.; Gao, Y.; Zhao, L.; Liang, J. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer. Sensors 2013, 13, 15785–15804. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chen, J.-H. Development of Dual-Axis MEMS Accelerometers for Machine Tools Vibration Monitoring. Appl. Sci. 2016, 6, 201. [Google Scholar] [CrossRef]
- Benedetti, E.; Ravanelli, R.; Moroni, M.; Nascetti, A.; Crespi, M. Exploiting Performance of Different Low-Cost Sensors for Small Amplitude Oscillatory Motion Monitoring: Preliminary Comparisons in View of Possible Integration. J. Sens. 2016, 2016, 7490870. [Google Scholar] [CrossRef] [Green Version]
- Kolli, V.R.; Dudla, P.; Talabattula, S. Integrated optical MEMS serially coupled double racetrack resonator based accelerometer. Optik 2021, 236, 166583. [Google Scholar] [CrossRef]
- Shi, Y.; Wen, X.; Zhao, Y.; Zhao, R.; Cao, H.; Liu, J. Investigation and experiment of high shock packaging technology for High-G MEMS accelerometer. IEEE Sens. J. 2020, 20, 9029–9037. [Google Scholar] [CrossRef]
- Yan, Z.; Hou, B.; Zhang, J.; Shen, C.; Shi, Y.; Tang, J.; Cao, H.; Liu, J. MEMS Accelerometer Calibration Denoising Method for Hopkinson Bar System Based on LMD-SE-TFPF. IEEE Access 2019, 7, 113901–113915. [Google Scholar] [CrossRef]
- Langfelder, G.; Bestetti, M.; Gadola, M. Silicon MEMS inertial sensors evolution over a quarter century. J. Micromech. Microeng. 2021, 31, 084002. [Google Scholar] [CrossRef]
- Zhu, L.; Fu, Y.; Chow, R.; Spencer, B.F., Jr.; Park, J.W.; Mechitov, K. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring. Sensors 2018, 18, 262. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Huang, Y.; Li, J.; Meng, M. Design and Experiment of a Novel High-Impact MEMS Ceramic Sandwich Accelerometer for Multi-Layer Target Penetration. IEEE Access 2020, 8, 107387–107398. [Google Scholar] [CrossRef]
Modal Order | Vibration Frequency (kHz) |
---|---|
1 | 80.739 |
2 | 113.631 |
3 | 128.231 |
4 | 128.234 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, M.; Chuai, S.; Huang, Y.; Liu, Y.; Li, J. Structural Design of MEMS Acceleration Sensor Based on PZT Plate Capacitance Detection. Micromachines 2023, 14, 1565. https://doi.org/10.3390/mi14081565
Cui M, Chuai S, Huang Y, Liu Y, Li J. Structural Design of MEMS Acceleration Sensor Based on PZT Plate Capacitance Detection. Micromachines. 2023; 14(8):1565. https://doi.org/10.3390/mi14081565
Chicago/Turabian StyleCui, Min, Senhui Chuai, Yong Huang, Yang Liu, and Jian Li. 2023. "Structural Design of MEMS Acceleration Sensor Based on PZT Plate Capacitance Detection" Micromachines 14, no. 8: 1565. https://doi.org/10.3390/mi14081565
APA StyleCui, M., Chuai, S., Huang, Y., Liu, Y., & Li, J. (2023). Structural Design of MEMS Acceleration Sensor Based on PZT Plate Capacitance Detection. Micromachines, 14(8), 1565. https://doi.org/10.3390/mi14081565