Thin-Film Solar Energy Absorber Structure for Window Coatings for Self-Sufficient Futuristic Buildings
Abstract
:1. Introduction
2. Structure Design and Methods
3. Results
3.1. Absorption Investigation under Solar Radiation
3.2. Effect and Role of Each Layer in Absorbing Solar Energy
3.3. Structural Parameters’ Effects on the Absorption Spectra of the Proposed Design
3.4. Performance Effects of the Angle of Incidence
3.5. Influence of Electric Field Distribution at the Six Perfect Peaks in XY and XZ Planes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahmud, S.; Karim, M.; Islam, S.S.; Shuvo, M.K.; Akter, T.; Almutairi, A.F.; Islam, M.T. A Multi-Band Near Perfect Polarization and Angular Insensitive Metamaterial Absorber With a Simple Octagonal Resonator for Visible Wavelength. IEEE Access 2021, 9, 117746–117760. [Google Scholar] [CrossRef]
- Chen, C.; Chai, M.; Jin, M.; He, T. Terahertz Metamaterial Absorbers. Adv. Mater. Technol. 2021, 7, 2101171. [Google Scholar] [CrossRef]
- Wu, L.; Li, Z.; Wang, W.; Zhao, L.; Ruan, H. Ultra-Broadband Wide-Angle Polarization-Independent Enhanced Absorber with Ultraviolet to Far-Infrared Absorption Performance. Phys. Status Solidi 2022, 259, 2200158. [Google Scholar] [CrossRef]
- Soukoulis, C.M.; Linden, S.; Wegener, M. Negative Refractive Index at Optical Wavelengths. Science 2007, 315, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Surve, J.; Parmar, J.; Aliqab, K.; Alsharari, M.; Armghan, A. SARS-CoV-2 detecting rapid metasurface-based sensor. Diam. Relat. Mater. 2023, 132, 109644. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Li, N.; Che, C.; Wang, W.; Barya, P.; Liu, W.; Liu, L.; Wang, X.; Wu, S.; Hu, H.; et al. Microscopies Enabled by Photonic Metamaterials. Sensors 2022, 22, 1086. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Averitt, R.D.; Padilla, W.J. Active and tunable nanophotonic metamaterials. Nanophotonics 2022, 11, 3769–3803. [Google Scholar] [CrossRef]
- Surve, J.; Patel, S.K.; Parmar, J. Design of Cost-Efficient Graphene Metasurface-Based Pregnancy Test With NOR Gate Realization and Parametric Optimization. IEEE Sens. J. 2022, 22, 23937–23944. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, W.; Sun, S.; Yi, N.; Song, Q.; Xiao, S. Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial. Opt. Mater. Express 2015, 5, 1954. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Prajapati, P.; Taya, S.A. Design of an ultra-wideband solar energy absorber with wide-angle and polarization independent characteristics. Opt. Mater. 2022, 131, 112683. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J.; Katkar, V.; Jadeja, R.; Taya, S.A.; Ahmed, K. Graphene-based metasurface solar absorber design for the visible and near-infrared region with behavior prediction using Polynomial Regression. Optik 2022, 262, 169298. [Google Scholar] [CrossRef]
- Patel, S.K.; Udayakumar, A.K.; Mahendran, G.; Vasudevan, B.; Surve, J.; Parmar, J. Highly efficient, perfect, large angular and ultrawideband solar energy absorber for UV to MIR range. Sci. Rep. 2022, 12, 18044. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Fan, H.; Dai, Q.; Wei, Z.; Lan, S.; Liu, H. Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime. Nanomaterials 2019, 9, 1222. [Google Scholar] [CrossRef] [PubMed]
- He, X.-J.; Yan, S.-T.; Ma, Q.-X.; Zhang, Q.-F.; Jia, P.; Wu, F.-M.; Jiang, J.-X. Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials. Opt. Commun. 2015, 340, 44–49. [Google Scholar] [CrossRef]
- Ko, B.; Chae, J.-Y.; Badloe, T.; Kim, H.; Kim, S.-J.; Hong, S.-H.; Paik, T.; Rho, J. Multilevel Absorbers via the Integration of Undoped and Tungsten-Doped Multilayered Vanadium Dioxide Thin Films. ACS Appl. Mater. Interfaces 2022, 14, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-H.; Meng, Y.-L.; Li, Y.; Li, Y.; Li, Y.-S.; Pan, G.-M.; Kang, J.; Zhan, C.-L.; Gao, H.; Hu, B.; et al. Ultra-Broadband, Omnidirectional, High-Efficiency Metamaterial Absorber for Capturing Solar Energy. Nanomaterials 2022, 12, 3515. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Chen, X.; Yi, Z.; Tang, Y.; Yang, H.; Zhou, Z.; Duan, T.; Cheng, S.; Zhang, J.; Yi, Y. A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt. Mater. 2019, 97, 109400. [Google Scholar] [CrossRef]
- Li, H.; Niu, J.; Zhang, C.; Niu, G.; Ye, X.; Xie, C. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals. Nanomaterials 2020, 10, 552. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Xu, D.; Yi, Z.; Chen, X.; Chen, J.; Tang, Y.; Wu, P.; Li, G.; Yi, Y. Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays. Results Phys. 2020, 16, 102951. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, C.; Tang, Y.; Liu, B.; Lv, L. A Perfect Absorber Based on Similar Fabry-Perot Four-Band in the Visible Range. Nanomaterials 2020, 10, 488. [Google Scholar] [CrossRef] [PubMed]
- Raza, H.M.T.; Rana, A.S. Metamaterial Absorber for Solar Thermophotovoltaic Systems. In Proceedings of the 2022 Third International Conference on Latest Trends in Electrical Engineering and Computing Technologies (INTELLECT), Karachi, Pakistan, 16–17 November 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, Y.; Chen, F. Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing. Optik 2021, 229, 166300. [Google Scholar] [CrossRef]
- Li, J.; Hu, G.; Shi, L.; He, N.; Li, D.; Shang, Q.; Zhang, Q.; Fu, H.; Zhou, L.; Xiong, W.; et al. Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials. Nat. Commun. 2021, 12, 6425. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhao, J. Simple design of a six-band terahertz perfect metasurface absorber based on a single resonator structure. Phys. Scr. 2022, 97, 095508. [Google Scholar] [CrossRef]
- Zheng, Y.; Yi, Z.; Liu, L.; Wu, X.; Liu, H.; Li, G.; Zeng, L.; Li, H.; Wu, P. Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays. Appl. Therm. Eng. 2023, 230, 120841. [Google Scholar] [CrossRef]
- Alsharari, M.; Muheki, J.; Armghan, A.; Aliqab, K.; Surve, J.; Patel, S.K. Thermal management mechanism employing transparent nanostructures for winter and summer seasons for indoor environments. Int. J. Therm. Sci. 2023, 193, 108533. [Google Scholar] [CrossRef]
- Dang, P.T.; Vu, T.V.; Kim, J.; Park, J.; Nguyen, V.-C.; Vo, D.D.; Nguyen, T.K.; Le, K.Q.; Lee, J.-H. Efficient Broadband Truncated-Pyramid-Based Metamaterial Absorber in the Visible and Near-Infrared Regions. Crystals 2020, 10, 784. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, C.; Pu, M.; Song, J.; Zhao, Z.; Wu, X.; Luo, X. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance. Sci. Rep. 2017, 7, 5652. [Google Scholar] [CrossRef]
- Chen, X. Insights into the Interfacial Chemistry in Systems Involving Iron Oxides; McGill University: Montreal, QC, Canada, 2022. [Google Scholar]
- Zhang, C.; Chen, Y.; Yang, H.; Wang, S.; Qin, F.; Liu, L.; Yi, Z.; Zhang, J.; Liu, C.; Wu, P. Grating Structure Broadband Absorber Based on Gallium Arsenide and Titanium. Coatings 2022, 12, 588. [Google Scholar] [CrossRef]
- Bimberg, D.; Grundmann, M.; Ledentsov, N.N. Quantum Dot Heterostructures; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Rius, G.; Baldi, A.; Ziaie, B.; Atashbar, M.Z. Introduction to Micro-/Nanofabrication. In Handbook of Nanotechnology; Bhushan, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 51–86. [Google Scholar]
- Acharya, S.K.; Mishra, D.P. Current Advances in Mechanical Engineering: Select Proceedings of ICRAMERD; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Rakić, A.D.; Majewski, M.L. Modeling the optical dielectric function of GaAs and AlAs: Extension of Adachi’s model. J. Appl. Phys. 1996, 80, 5909–5914. [Google Scholar] [CrossRef]
- Lu, H.; Chen, L.; Cao, R.; Tao, X.; Wang, X.; Li, M.; Li, P.; Lu, Y.; Klar, P.J.; He, Y. RuVO2 alloy epitaxial films: Lowered insulator–metal transition temperature and retained modulation capacity. Appl. Phys. Lett. 2020, 116, 192103. [Google Scholar] [CrossRef]
- Huang, W.; Xu, R.; Lin, Y.-S.; Chen, C.-H. Three-dimensional pyramid metamaterial with tunable broad absorption bandwidth. AIP Adv. 2020, 10, 035125. [Google Scholar] [CrossRef]
- Amin, M.; Basamed, S.; Qniqoon, A.; Alshabibi, F.; Raean, S.B.; Aldhlea, H. Nanoplasmonic Pyramidal Metamaterial Absorber at Optical Frequencies. 2022; preprint. [Google Scholar] [CrossRef]
- Fneish, Z.; Ayad, H.; Kadi, M.; Jomaa, J.; Faour, G. Curved Pyramidal Metamaterial Absorber: From Theory to an Ultra-Broadband Application in the [0.3–30] GHz Frequency Band. Adv. Sci. Technol. Eng. Syst. J. 2021, 6, 29–35. [Google Scholar] [CrossRef]
- Ünal, E.; Bağmancı, M.; Karaaslan, M.; Akgol, O.; Arat, H.T.; Sabah, C. Zinc oxide–tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting. IET Optoelectron. 2017, 11, 114–120. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Z.; Liang, Z.; Meng, D.; Xu, H.; Smith, D.R.; Liu, Y. Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light Sci. Appl. 2021, 10, 138. [Google Scholar] [CrossRef] [PubMed]
Model | Interval | Average % of Overall Absorption | Bandwidth (Absorption > 90%) | Bandwidth (Absorption > 98%) | Angle Insensitive |
---|---|---|---|---|---|
Developed Pyramid MMA | 200–2500 nm | 96.94 | 2100 nm | 860 nm | TE (0–60°) TM (0–40°) |
Ref. [38] | 8.88–30 µm | 96.57 | 9.56 µm | - | (0–60°) |
Ref. [39] | 400–1500 nm | 96.64 | 300 nm | - | - |
Ref. [40] | 0.3–30 GHz | 71.82 | 14 GHz | 2 GHz | - |
Ref. [28] | 300–1600 nm | 98 | 900 nm | 678 nm | TE (0–40°) TM (0–20°) |
Ref. [41] | 100–1000 THz | 99 | 160 THz | 700 THz | (0–55°) |
Ref. [42] | 8–30 µm | 92 | 4 µm | - | (0–60°) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaif, H.; Muheki, J.; Ben Ali, N.; Ghachem, K.; Surve, J.; Patel, S.K. Thin-Film Solar Energy Absorber Structure for Window Coatings for Self-Sufficient Futuristic Buildings. Micromachines 2023, 14, 1628. https://doi.org/10.3390/mi14081628
Alsaif H, Muheki J, Ben Ali N, Ghachem K, Surve J, Patel SK. Thin-Film Solar Energy Absorber Structure for Window Coatings for Self-Sufficient Futuristic Buildings. Micromachines. 2023; 14(8):1628. https://doi.org/10.3390/mi14081628
Chicago/Turabian StyleAlsaif, Haitham, Jonas Muheki, Naim Ben Ali, Kaouther Ghachem, Jaymit Surve, and Shobhit K. Patel. 2023. "Thin-Film Solar Energy Absorber Structure for Window Coatings for Self-Sufficient Futuristic Buildings" Micromachines 14, no. 8: 1628. https://doi.org/10.3390/mi14081628
APA StyleAlsaif, H., Muheki, J., Ben Ali, N., Ghachem, K., Surve, J., & Patel, S. K. (2023). Thin-Film Solar Energy Absorber Structure for Window Coatings for Self-Sufficient Futuristic Buildings. Micromachines, 14(8), 1628. https://doi.org/10.3390/mi14081628