Review of Gas Dynamic RF-Only Funnel Technique for Low-Energy and High-Quality Ion Beam Extraction into a Vacuum
Abstract
:1. Introduction
2. General Description
3. RF-Only Funnels for Ion Extraction into a Vacuum from Gas Cells
3.1. The RF-Only Ion Funnel at Stanford University
3.2. The RF-Only Ion Funnels for UniCell Setup
4. Laser Ablation Ion Beam Sources
4.1. Proposal of the Finely Focused Ion Beams for Micro- and Nanoelectronic Technologies
4.2. The Laser Ablation Ion Beam Source with the RF-Only Funnel at ETH, Zürich
4.3. The Laser Ablation Ion Beam Source with the RF-Only Funnel at TU, Darmstadt
5. “Fair-Wind Gas Cell” Concept
6. Windowless Gas Dynamic Ion Beam Cooler and Buncher
7. Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Iivonen, A.; Saintola, R.; Valli, K. Ion-guide quadrupole mass spectrometer. Phys. Scr. 1990, 42, 133–137. [Google Scholar] [CrossRef]
- Äystö, J. Development and applications of the IGISOL technique. Nucl. Instrum. Methods Phys. Res. A 2001, 693, 477–494. [Google Scholar] [CrossRef]
- Sonoda, T.; Fujita, M.; Yamazaki, A.; Endo, T.; Shinozuka, T.; Miyashita, Y.; Sato, N.; Goto, A.; Tanaka, E.; Suzuki, T.; et al. Development of the RF-IGISOL at CYRIC. Nucl. Instrum. Methods Phys. Res. B 2007, 254, 295–299. [Google Scholar] [CrossRef]
- Engels, O.; Beck, L.; Bollen, G.; Habs, D.; Marx, G.; Neumayr, J.; Schramm, U.; Schwarz, S.; Thirolf, P.; Varentsov, V. First measurements with the gas cell for SHIPTRAP. Hyperfine Interact. 2001, 132, 505–509. [Google Scholar] [CrossRef]
- Neumayr, J.B.; Beck, L.; Habs, D.; Heinz, S.; Szerypo, J.; Thirolf, P.G.; Varentsov, V.; Voit, F. SHIPTRAP Collaboration, The ion-catcher device for SHIPTRAP. Nucl. Instrum. Methods Phys. Res. B 2006, 244, 489–500. [Google Scholar] [CrossRef]
- Schwarz, S.; Bollen, G.; Lawton, D.; Lofy, P.; Morrissey, D.J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; Varentsov, V.; et al. The low-energy-beam and ion-trap facility at NSCL/MSU. Nucl. Instrum. Methods Phys. Res. B 2003, 204, 507–511. [Google Scholar] [CrossRef]
- Jokinen, A.; Lindroos, M.; Molin, E.; Petersson, M.; The ISOLDE Collaborations. RFQ-cooler for low-energy radioactive ions at ISOLDE. Nucl. Instrum. Methods Phys. Res. B 2003, 204, 86–89. [Google Scholar] [CrossRef]
- Cooper, K.; Sumithrarachchi, C.S.; Morrissey, D.J.; Levand, A.; Rodriguez, J.A.; Savard, G.; Schwarz, S.; Zabransky, B. Extraction of thermalized projectile fragments from a large volume gas cell. Nucl. Instrum. Methods Phys. Res. A 2014, 763, 543–546. [Google Scholar] [CrossRef]
- Savard, G.; Levand, A.F.; Zabransky, B.J. The CARIBU gas catcher. Nucl. Instrum. Methods Phys. Res. A 2012, 685, 70–77. [Google Scholar] [CrossRef]
- Boussaid, R.; Ban, G.; Quéméner, G.; Merrer, Y.; Lorry, J. Development of a radio-frequency quadrupole cooler for high beam currents. Phys. Rev. Accel. Beams 2017, 20, 124701. [Google Scholar] [CrossRef]
- Barquest, B.R.; Bollen, G.; Mantica, P.F.; Minamisono, K.; Ringle, R.; Schwarz, S. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes. Nucl. Instrum. Methods Phys. Res. Sect. A 2017, 866, 18. [Google Scholar] [CrossRef]
- Schwarz, S.; Bollen, G.; Ringle, R.; Savory, J.; Schury, P. The LEBIT ion cooler and buncher. Nucl. Instrum. Methods Phys. Res. Sect. A 2017, 816, 131. [Google Scholar] [CrossRef]
- Franberg, H.; Delahaye, P.; Billowes, J.; Blaum, K.; Catherall, R.; Duval, F.; Gianfrancesco, O.; Giles, T.; Jokinen, A.; Lindroos, M.; et al. Off-line commissioning of the ISOLDE cooler. Nucl. Instrum. Methods Phys. Res. Sect. A 2008, 266, 4502. [Google Scholar] [CrossRef]
- Barquest, B.R.; Bale, J.C.; Dilling, J.; Gwinner, G.; Kanungo, R.; Krücke, R.; Pearson, M.R. Development of a new RFQ beam cooler and buncher for the CANREB project at TRIUMF. Nucl. Instrum. Methods Phys. Res. Sect. B 2016, 376, 207. [Google Scholar] [CrossRef]
- Brunner, T.; Smith, M.J.; Brodeur, M.; Ettenauer, S.; Gallant, A.T.; Simon, V.V.; Chaudhuri, A.; Lapierre, A.; Mane, E.; Ringle, R.; et al. TITAN’s digital RFQ ion beam cooler and buncher, operation and performance. Nucl. Instrum. Methods Phys. Res. Sect. A 2012, 676, 32. [Google Scholar] [CrossRef]
- Eliseev, S.A.; Block, M.; Chaudhuri, A.; Di, Z.; Habs, D.; Herfurth, F.; Kluge, H.-J.; Neumayr, J.B.; Plaß, W.R.; Rauth, C.; et al. Extraction efficiency and extraction time of the SHIPTRAP gas-filled stopping cell. Nucl. Instrum. Methods Phys. Res. Sect. B 2007, 258, 479. [Google Scholar] [CrossRef]
- Herfurth, F.; Dilling, J.; Kellerbauer, A.; Bollen, G.; Henry, S.; Kluge, H.-J.; Lamour, E.; Lunney, D.; Moore, R.B.; Scheidenberger, C.; et al. A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Instrum. Methods Phys. Res. A 2001, 469, 254–275. [Google Scholar] [CrossRef]
- Herfurth, F. Ein Neuer Lonenstrahlk. Uhler Und -Pulser für ISOLTRAP und Massenmessungen an Radioaktiven Argonionen. Ph.D. Thesis, Universität Heidelberg, Heidelberg, Germany, 2001. [Google Scholar]
- Droese, C.; Eliseev, S.; Blaum, K.; Block, M.; Herfurth, F.; Laatiaoui, M.; Lautenschläger, F.; Ramirez, E.M.; Schweikhard, L.; Simon, V.V.; et al. The cryogenic gas stopping cell of SHIPTRAP. Nucl. Instrum. Methods Phys. Res. B 2014, 338, 126. [Google Scholar] [CrossRef]
- Ranjan, M.; Dendooven, P.; Purushothaman, S.; Dickel, T.; Reiter, M.P.; Ayet, S.; Haettner, E.; Moore, I.D.; Kalantar-Nayestanaki, N.; Geissel, H.; et al. Design, construction and cooling system performance of a prototype cryogenic stopping cell for the super-FRS at FAIR. Nucl. Instrum. Methods Phys. Res. A 2015, 770, 87. [Google Scholar] [CrossRef]
- Dickel, T.; Plaß, W.R.; Geissel, H.; Heiße, F.; Miskun, I.; Purushothman, S.; Reiter, M.P.; Rink, A.-K.C. Conceptional design of a novel next-generation cryogenic stopping cell for the low-energy branch of the super-FRS. Nucl. Instrum. Methods Phys. Res. B 2016, 376, 216–220. [Google Scholar] [CrossRef]
- Sonoda, T.; Wada, M.; Tomita, H.; Sakamoto, C.; Takatsuka, T.; Furukawa, T.; Iimura, H.; Ito, Y.; Kubo, T.; Matsuo, Y.; et al. Development of a resonant laser ionization gas cell for high-energy, short-lived nuclei. Nucl. Instrum. Methods Phys. Res. B 2013, 295, 1. [Google Scholar] [CrossRef]
- Saastamoinen, A.; Moore, I.D.; Ranjan, M.; Dendooven, P.; Penttilä, H.; Peräjärvi, K.; Popov, A.; Äystö, J. Characterization of a cryogenic ion guide at IGISOL. Nucl. Instrum. Methods Phys. Res. B 2016, 376, 246. [Google Scholar] [CrossRef]
- Moore, I.D. New concepts for the ion guide technique. Nucl. Instrum. Methods Phys. Res. Sect. B 2008, 266, 4434. [Google Scholar] [CrossRef]
- Wada, M. Genealogy of gas cells for low-energy RI-beam production. Nucl. Instrum. Methods Phys. Res. B 2013, 317, 450. [Google Scholar] [CrossRef]
- Varentsov, V. A New Approach to the Extraction System Design. In Proceedings of the SHIPTRAP Collaboration Meeting, Mainz, Germany, 19 March 2001. [Google Scholar] [CrossRef]
- Varentsov, V.L.; Ignatiev, A.A. Numerical investigations of internal supersonic jet targets formation for storage rings. Nucl. Instrum. Methods Phys. Res. Sect. A 1998, 413, 447–456. [Google Scholar] [CrossRef]
- Scientific Instrument Services, Inc. 1027 Old York Road. Ringoes, NJ 08551-1054. USA. Available online: http://simion.com (accessed on 12 September 2023).
- Brunner, T.; Fudenberg, D.; Sabourov, A.; Varentsov, V.L.; Gratta, G.; Sinclair, D.; The EXO Collaboration. A setup for Ba-ion extraction from high pressure Xe gas for double-beta decay studies with EXO. Nucl. Instrum. Methods Phys. Res. Sect. A 2013, 317 Pt B, 473. [Google Scholar] [CrossRef]
- Brunner, T.; Fudenberg, D.; Varentsov, V.; Sabourov, A.; Gratta, G.; Dilling, J.; nEXO Collaboration. An RF-only ion-funnel for extraction from high-pressure gases. Int. J. Mass Spectrom. 2014, 379, 110–120. [Google Scholar] [CrossRef]
- Dietiker, R.; Egorova, T.; Günther, D.; Hattendorf, B.; Varentsov, V. Laser-Ablation Ion Source with Ion Funnel. WO Patent App. PCT/EP2011/003256. Available online: www.google.com/patents/WO2012003946A1?cl=en (accessed on 12 January 2012).
- Querci, L.; Varentsov, V.; Günther, D.; Hattendorf, B. An RF-only ion funnel interface for ion cooling in laser ablation time of flight mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2018, 146, 57–68. [Google Scholar] [CrossRef]
- Ratajczyk, T.; Bollinger, P.; Lellinger, T.; Varentsov, V.; Nörtershäuser, W. Towards a He-buffered laser ablation ion source for collinear laser spectroscopy. Hyperfine Interact. 2020, 241, 52. [Google Scholar] [CrossRef]
- Valverde, A.A.; Brodeur, M.; Burdette, D.P.; Clark, J.A.; Klimes, J.W.; Lascar, D.; O’Malley, P.D.; Ringle, R.; Savard, G.; Varentsov, V. Stopped, bunched beams for the TwinSol facility. Hyperfine Interact. 2019, 240, 38. [Google Scholar] [CrossRef]
- O’Malley, P.D.; Brodeur, M.; Burdette, D.P.; Klimes, J.W.; Valverde, A.; Clark, J.A.; Savard, G.; Ringle, R.; Varentsov, V. Testing the weak interaction using St. Benedict at the University of Notre Dame. Nucl. Instrum. Methods Phys. Res. Sect. B 2020, 463, 488. [Google Scholar] [CrossRef]
- Murray, K.; Dilling, J.; Gornea, R.; Ito, Y.; Koffas, T.; Kwiatkowski, A.A.; Lan, Y.; Reiter, M.P.; Varentsov, V.; Brunner, T.; et al. Design of a Multiple-Reflection Time-of-Flight Mass-Spectrometer for Barium-tagging. Hyperfine Interact. 2019, 240, 97. [Google Scholar] [CrossRef]
- Varentsov, V.; Yakushev, A. Concept of a new Universal High-Density Gas Stopping Cell Setup for study of gas-phase chemistry and nuclear properties of Super Heavy Elements (UniCell). Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 940, 206. [Google Scholar] [CrossRef]
- Varentsov, V. Conceptual Design of a Triple-Funnel System for Ba Ions Extraction from 10 Bar Xenon Gas; FAIR: Darmstadt, Germany, 2016. [Google Scholar] [CrossRef]
- Varentsov, V. Proposal of an RF-Only Double-Funnel System for Ions Extraction from a Cryogenic Stopping Cell for the Super-FRS at FAIR. GSI Sci. Rep. 2015, 2015, 503–504. [Google Scholar] [CrossRef]
- Semchenkov, A.; Brüchle, W.; Jäger, E.; Schimpf, E.; Schädel, M.; Mühle, C.; Klos, F.; Türler, A.; Yakushev, A.; Belov, A.; et al. The TransActinide Separator and Chemistry Apparatus (TASCA) at GSI—Optimization of ion-optical structures and magnet designs. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interactions Mater. Atoms 2008, 266, 4153. [Google Scholar] [CrossRef]
- Varentsov, V.L. Focused ion beam source of a new type for micro- and nanoelectronic technologies. Proc. SPIE 2008, 7025, 702509. [Google Scholar] [CrossRef]
- Varentsov, V. Proposal of a new Laser ablation ion source for LaSpec and MATS testing. In Proceedings of the NUSTAR Collaboration Meeting, Darmstadt, Germany, 1 March 2016. [Google Scholar] [CrossRef]
- Varentsov, V. A New Generation of Cryogenic Gas Stopper Based on RF-Funnels Ion Extraction and Bunching; Proposal for EMMATrap Collaboration; 2017. [Google Scholar] [CrossRef]
- Nörtershäuser, W.; Campbell, P. Laspec at fair’s low energy beamline: A new perspective for laser spectroscopy of radioactive nuclei. Hyperfine Interact. 2006, 171, 149. [Google Scholar] [CrossRef]
- Varentsov, V.L.; Habs, D. “Fair-wind gas cell”—A new concept of a buffer gas cell design. Nucl. Instrum. Methods Phys. Res. Sect. A 2002, 490, 16. [Google Scholar] [CrossRef]
- Varentsov, V.L.; Wada, M. Computer experiments on ion beam cooling and guiding in fair-wind gas cell and extraction RF-funnel system. Nucl. Instrum. Methods Phys. Res. Sect. A 2004, 532, 210. [Google Scholar] [CrossRef]
- Varentsov, V.; Yakushev, A. Fair-wind gas cell for the UniCell setup. Nucl. Instrum. Methods Phys. Res. Sect. A 2021, 1010, 165487. [Google Scholar] [CrossRef]
- Varentsov, V.L.; Habs, D. A cooler for intense low-energy ion beams. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 496, 286. [Google Scholar] [CrossRef]
- Varentsov, V. Windowless gas dynamic ion beam cooler and buncher. Nucl. Instrum. Methods Phys. Res. Sect. A 2020, 984, 164596. [Google Scholar] [CrossRef]
Nozzle | 1st | 2nd | 3rd |
---|---|---|---|
Half-angle of diverging cone | 26.5° | 26.5° | 45° |
Length of diverging cone | 3.7 mm | 3.0 mm | 0.5 mm |
Throat diameter | 0.3 mm | 1.0 mm | 1.0 mm |
Exit diameter | 4.0 mm | 4.0 mm | 2.0 mm |
Gap between nozzle and funnel | 5.0 mm | - | 0.5 mm |
Funnel | 1st and 2nd (RF-Only) | Buncher (RF + DC) |
---|---|---|
Entrance aperture diameter | 4.0 mm | 2.0 mm |
Exit aperture diameter | 1.0 mm | 2.0 mm |
Electrode thickness | 0.1 mm | 0.2 mm |
Inter-electrode spacing | 0.25 mm | 0.5 mm |
Number of electrodes | 60 | 25 |
Parameter | Gas Cell | 1st RF-Oonly Funnel | 2nd RF-Only Funnel | RF Buncher |
---|---|---|---|---|
He gas pressure | 1.0 bar | 12 mbar | 2 mbar | 2 × 10−4 mbar |
Gas flow rate through chamber (mbar l/s) | 27.0 | 20.57 | 6.2 | 0.23 |
Required pumping speed (l/s) | - | 1.71 | 3.1 | 1000 |
1st RF-Only Funnel | 2nd RF-Only Funnel | RF Buncher | |
---|---|---|---|
RF amplitude (Vpp) | 15 | 15 | 80 |
RF frequency (MHz) | 5 | 5 | 5 |
3rd nozzle-buncher DC bias | - | - | −0.35 V |
DC potential gradient | - | - | −0.035 V |
Ion Mass | 290 | 100 | 27 |
---|---|---|---|
Total transmission efficiency (%) | 92.9 ± 2.5 | 89.6 ± 2.4 | 84.2 ± 2.3 |
Longitudinal velocity (m/c) energy (eV) | 7990 95.8 | 13,580 95.47 | 26,150 95.5 |
Longitudinal (90%) velocity spread (m/c) energy spread (eV) | 90 0.02416 | 230 0.0544 | 250 0.0171 |
Radial velocity (m/c) energy (eV) | 230 0.079 | 360 0.0797 | 850 0.141 |
Radial velocity spread (m/c) energy spread (eV) | 340 0.344 | 650 0.434 | 1250 0.434 |
Beam radius (90%) (mm) | 0.95 | 0.85 | 0.89 |
Transverse emittance εx,y (π∙mm∙mrad) | 19.34 | 16.54 | 20.46 |
Normalized emittance εNx,y = εx,y∙[E]1/2 (π∙mm∙mrad [eV]1/2) | 189.27 | 161.63 | 199.9 |
Time of flight (µs) | 200 | 200 | 200 |
Time of flight width ΔT (µs) | 127 | 71 | 75 |
Ion Mass | 20 | 40 | 80 | 120 | 160 | 200 | 240 |
---|---|---|---|---|---|---|---|
Total transmission efficiency (%) | 98.3 | 99.1 | 99.6 | 99.5 | 99.6 | 99.7 | 99.4 |
Longitudinal (90%) energy spread (eV) | 1.15 | 0.28 | 0.17 | 0.11 | 0.09 | 0.07 | 0.06 |
Transverse (90%) energy spread (eV) | 0.65 | 0.26 | 0.31 | 0.32 | 0.33 | 0.33 | 0.35 |
Normalized transverse emittance (90%) (π∙mm∙mrad∙[eV]1/2) | 151.7 | 171.6 | 159.8 | 182 | 183.6 | 183.8 | 164.7 |
RF amplitude (peak-to-peak) (Vpp) | 60 | 70 | 85 | 105 | 120 | 140 | 150 |
Ion Mass | 20 | 40 | 80 | 120 | 160 | 200 | 240 |
---|---|---|---|---|---|---|---|
Total transmission efficiency (%) | 96 | 98 | 99.7 | 99 | 98.6 | 99.2 | 98.9 |
Longitudinal (90%) energy spread (eV) | 0.47 | 0.33 | 0.15 | 0.06 | 0.05 | 0.05 | 0.04 |
Bunch time (90%) width (µs) | 10 | 6.2 | 6.8 | 8 | 9.6 | 12 | 13 |
Longitudinal emittance (90%) (eV µs) | 4.7 | 2.05 | 1.04 | 0.48 | 0.51 | 0.64 | 0.55 |
Transverse (90%) energy spread (eV) | 0.65 | 0.26 | 0.31 | 0.32 | 0.33 | 0.33 | 0.35 |
Normalized transverse emittance (90%) (π∙mm∙mrad∙[eV]1/2) | 151.7 | 171.6 | 159.8 | 182 | 183.6 | 183.8 | 164.7 |
RF-Amplitude (peak-to-peak) (Vpp) | 60 | 70 | 85 | 105 | 120 | 140 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varentsov, V. Review of Gas Dynamic RF-Only Funnel Technique for Low-Energy and High-Quality Ion Beam Extraction into a Vacuum. Micromachines 2023, 14, 1771. https://doi.org/10.3390/mi14091771
Varentsov V. Review of Gas Dynamic RF-Only Funnel Technique for Low-Energy and High-Quality Ion Beam Extraction into a Vacuum. Micromachines. 2023; 14(9):1771. https://doi.org/10.3390/mi14091771
Chicago/Turabian StyleVarentsov, Victor. 2023. "Review of Gas Dynamic RF-Only Funnel Technique for Low-Energy and High-Quality Ion Beam Extraction into a Vacuum" Micromachines 14, no. 9: 1771. https://doi.org/10.3390/mi14091771
APA StyleVarentsov, V. (2023). Review of Gas Dynamic RF-Only Funnel Technique for Low-Energy and High-Quality Ion Beam Extraction into a Vacuum. Micromachines, 14(9), 1771. https://doi.org/10.3390/mi14091771