Implementation of Highly Reliable Contacts for RF MEMS Switches
Abstract
:1. Introduction
2. Switch Design
3. Implementation of Highly Reliable Contacts
3.1. Material Selection for Conctact Structure
3.2. Fabrication Process of Bottom Contact Area
3.3. Shapes and Fabrication Processes of Contacts
3.3.1. Type A: Flat Contacts
3.3.2. Type B: Bump-Type Contacts
3.3.3. Type C: Circular Contacts
3.4. Fabrication Processes for the Switch
4. Measurement Results and Comparisons
4.1. RF Performance Comparison
4.2. Lifetime Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rebeiz, G.M. RF MEMS Theory, Design, and Technology; John Wiley & Sons Ltd.: Oxford, UK, 2003; pp. 1–20. [Google Scholar]
- Rebeiz, G.M.; Muldavin, J.B. RF MEMS switches and switch circuits. IEEE Microw. Mag. 2001, 2, 59–71. [Google Scholar] [CrossRef]
- Sedaghat, P.H.; Rebeiz, G.M. High Contact Force RF MEMS Switch. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA, USA, 23–28 May 2010; pp. 304–307. [Google Scholar]
- Varadan, V.K.; Vinoy, K.J.; Jose, K.A. RF MEMS and Their Applications; John Wiley & Sons Ltd.: Oxford, UK, 2003; pp. 117–124. [Google Scholar]
- Liu, L.; Smith, S. High Performance RF MEMS Series Contact Switch–Process Considerations and Device Performance. In Proceedings of the 58th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 27–30 May 2008; pp. 179–185. [Google Scholar]
- Daneshmand, M.; Fouladi, S.; Mansour, R.R.; Lisi, M.; Stajcer, T. Thermally Actuated Latching RF MEMS Switch and Its Characteristics. IEEE Trans. Microw. Theory Tech. 2009, 57, 3229–3238. [Google Scholar] [CrossRef]
- Cho, I.J.; Song, T.; Baek, S.H.; Yoon, E. A Low-Voltage and Low-Power RF MEMS Series and Shunt Switches Actuated by Combination of Electromagnetic and Electrostatic Forces. IEEE Trans. Microw. Theory Tech. 2005, 53, 2450–2457. [Google Scholar]
- Lee, H.C.; Park, J.H.; Park, J.Y.; Nam, H.J.; Bu, J.U. Design, fabrication and RF performances of two different types of piezoelectrically actuated Ohmic MEMS switches. J. Micromech. Microeng. 2005, 15, 2098–2104. [Google Scholar] [CrossRef]
- Fruehling, A.; Pimpinella, R.; Nordin, R.; Peroulis, D. A Single-crystal Silicon DC−40 GHz RF MEMS Switch. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest 2009, Boston, MA, USA, 7–12 June 2009; pp. 1633–1636. [Google Scholar]
- Chan, R.; Lesnick, R.; Becher, D.; Feng, M. Low-Actuation Voltage RF MEMS Shunt Switch with Cold Switching Lifetime of Seven Billion Cycles. J. Microelectromech. Syst. 2003, 12, 713–719. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, Y.; Deng, K. Novel High Isolation and High Capacitance Ratio RF MEMS Switch: Design, Analysis and Performance Verification. Micromachines 2022, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Liu, Z.; Hu, G. Design and Fabrication of a Capacitive Series RF MEMS Switch. Chin. J. Sens. Actuators 2008, 21, 660–663. [Google Scholar]
- Schauwecker, B.; Mehner, J.; Strohm, K.M.; Haspeklo, H.; Luy, J.F. Investigations of rf shunt airbridge switches among different environmental conditions. Sens. Actuators A 2004, 114, 49–58. [Google Scholar] [CrossRef]
- Lucyszyn, S. Advanced RF MEMS; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hou, Z.; Zhang, Y.; Si, C. A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy. Micromachines 2023, 14, 1098. [Google Scholar] [CrossRef] [PubMed]
- Czaplewski, D.A.; Nordquist, C.D.; Patrizi, G.A.; Kraus, G.M.; Cowan, W.D. RF MEMS Switches with RuO2–Au Contacts Cycled to 10 billion Cycles. J. Microelectromechanical Syst. 2013, 22, 655–661. [Google Scholar] [CrossRef]
- Sawant, V.B.; Mohite, S.S.; Cheulkar, L.N. Comprehensive contact material selection approach for RF MEMS switch. Mater. Today: Proc. 2018, 5, 10704–10711. [Google Scholar] [CrossRef]
- Kageyama, T.; Shinozaki, K.; Zhang, L.; Lu, J.; Takaki, H.; Lee, S.S. An Ohmic Contact Type RF-MEMS Switch Having Au-Au/CNTs Contacts. In Proceedings of the 12th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Los Angeles, CA, USA, 9–12 April 2017; pp. 287–290. [Google Scholar]
- Basu, A.; Adams, G.G.; McGruer, N.E. A review of micro-contact physics, materials, and failure mechanisms in direct-contact RF MEMS switches. J. Micromech. Microeng. 2016, 26, 104004. [Google Scholar] [CrossRef]
- Chow, L.L.; Volakis, J.L.; Saitou, K.; Kurabayashi, K. Lifetime Extension of RF MEMS Direct Contact Switches in Hot Switching Operations by Ball Grid Array Dimple Design. IEEE Electron Device Lett. 2007, 28, 479–481. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Yu, B.; Liu, X. A Compact Single-Cantilever Multicontact RF-MEMS Switch with Enhanced Reliability. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 191–193. [Google Scholar] [CrossRef]
- Bansal, D.; Kumar, P.; Kumar, A.; Rangra, K. Contact area design of ohmic RF MEMS switch for enhanced power handling. In Proceedings of the Twelfth International Conference on Sensing Technology (ICST), Limerick, Ireland, 4–6 December 2018. [Google Scholar]
- Pal, J.; Lu, J.; Dao, D.; Dao, D.; Khan, F. High power and reliable SPST SP3T RF MEMS switches for wireless applications. IEEE Electron Device Lett. 2016, 37, 1219–1222. [Google Scholar] [CrossRef]
- Wang, L.; Han, L.; Tang, J.; Huang, Q. Laterally-actuated inside-driven RF MEMS switches fabricated by a SOG process. J. Micromech. Microeng. 2015, 24, 065007. [Google Scholar] [CrossRef]
- Yu, Y. RF MEMS Reconfigurable Monolithic Circuits. Doctoral Dissertation, Nanjing University, Nanjing, China, 2012. [Google Scholar]
- Bannuru, T. Effects of Alloying on Mechanical Behavior of Noble Metal Thin Films for Micro-Electronic and MEMS/NEMS Applications. Doctoral Dissertation, Lehigh University, Bethlehem, PA, USA, 2008. [Google Scholar]
- Patel, C.D.; Rebeiz, G.M. A High-Reliability High-Linearity High-Power RF MEMS Metal-Contact Switch for DC–40-GHz Applications. IEEE Trans. Microw. Theory Tech. 2012, 60, 3096–3112. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Beam thickness | 5 μm |
Beam spring size | 40 × 20 μm |
Beam electrode size | 80 × 100 μm |
Electrostatic gap | 1.5 μm |
Gap/Signal/Gap | 40 μm/80 μm/40 μm |
Actuation voltage | 60 V |
Chip size | 1000 μm × 1200 μm |
Reference | Insertion Loss (dB) | Isolation (dB) | Actuation Voltage (V) | Lifetime | |
---|---|---|---|---|---|
[15] | −0.9@6 GHz | −24@6 GHz | 75 | NULL | |
[16] | −0.4@10 GHz | −28@10 GHz | 120 | 10 billion | |
[18] | −0.7@40 GHz | −18@40 GHz | 90 | 9100 | |
[27] | NULL | −40@8 GHz | 25 | 500 million | |
This work | Type A | −0.72@30 GHz | −21.1@30 GHz | 60 | 19 million |
Type B | −0.84@30 GHz | −21.1@30 GHz | 350 million | ||
Tpye C | −0.63@30 GHz | −20.8@30 GHz | >1.2 billion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Wang, L.; Huang, X.; Huang, Z.; Huang, M. Implementation of Highly Reliable Contacts for RF MEMS Switches. Micromachines 2024, 15, 155. https://doi.org/10.3390/mi15010155
Jiang L, Wang L, Huang X, Huang Z, Huang M. Implementation of Highly Reliable Contacts for RF MEMS Switches. Micromachines. 2024; 15(1):155. https://doi.org/10.3390/mi15010155
Chicago/Turabian StyleJiang, Lili, Lifeng Wang, Xiaodong Huang, Zhen Huang, and Min Huang. 2024. "Implementation of Highly Reliable Contacts for RF MEMS Switches" Micromachines 15, no. 1: 155. https://doi.org/10.3390/mi15010155
APA StyleJiang, L., Wang, L., Huang, X., Huang, Z., & Huang, M. (2024). Implementation of Highly Reliable Contacts for RF MEMS Switches. Micromachines, 15(1), 155. https://doi.org/10.3390/mi15010155