Integrated Microfluidic Chip Technology for Copper Ion Detection Using an All-Solid-State Ion-Selective Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Apparatus
2.2. Experimental Reagents
2.3. Preparation of Solutions
2.4. Preparation of the Integrated ASS-ISE Microfluidic Chip
2.4.1. Preparation of the ASS-ISE with Copper
2.4.2. Preparation of the ASS Reference Electrode
2.4.3. Preparation of the PDMS Cover
2.5. Design and Preparation of the Ion-Selective Electrode Microfluidic Chip
2.6. Preparation and Morphological Characterization of the Conductive Polymer PEDOT/PSS
2.7. Performance Optimization of the Copper Ion-Selective Membrane
2.8. Reproducibility Test of the ASS-ISE with Copper
2.9. Selectivity Test of the ASS-ISE with Copper
2.10. Self-Made Potential Detection Device
3. Results and Discussion
3.1. Morphological Characterization of the Conductive Polymer PEDOT/PSS
3.2. Optimization of the Copper Ion-Selective Membrane
3.3. Reproducibility of the ASS-ISE with Copper
3.4. Selectivity of the ASS-ISE
3.5. Construction of a Potential Detection Device
3.5.1. Signal Processing Circuit
3.5.2. Data Collector
3.5.3. Data Terminal
3.6. Construction and Testing of the Integrated ASS-ISE Microfluidic Chip Test System
3.6.1. Construction of the Integrated ASS-ISE Chip Test System
3.6.2. Stability Test of the Integrated ASS-ISE Microfluidic Chip Test System
3.6.3. Analysis of the Integrated ASS-ISE Microfluidic Chip Test System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X. Boiler Water Treatment Technology, 1st ed.; China Labor Publishing House: Hong Kong, China, 1999. [Google Scholar]
- DL/T 955-2016; Analysis of Water and Steam in Fossil Power Plant Determination of Copper and Iron by Atomic Absorption Spectrophotometryr. National Energy Administration: Beijing, China, 2016.
- Pourbasheer, E.; Morsali, S.; Azari, Z.; Karimi, M.A.; Ganjali, M.R. Design of a novel optical sensor for determination of trace amounts of copper by UV-visible spectrophotometry in real samples. Appl. Organomet. Chem. 2018, 32, 4110. [Google Scholar] [CrossRef]
- Gil, R.L.; Amorim, C.G.; Montenegro, M.C.B.S.M.; Araújo, A.N. Potentiometric detection in liquid chromatographic systems: An overview. J. Chromatogr. A 2019, 1602, 326. [Google Scholar] [CrossRef] [PubMed]
- Yolcu, M.; Dere, N. All-solid-State Potentiometric Cu(II)-selective Sensor Based on Ion Imprinted Methacrylamide Polymer. Electroanalysis 2018, 30, 1147–1154. [Google Scholar] [CrossRef]
- An, Q.B.; Jia, F.; Xu, J. Recent progress of all solid state ion-selective electrode. Sci. Sin. Chim. 2017, 47, 524–531. [Google Scholar]
- Faridbod, F.; Dinarvand, R. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade. Sensors 2008, 8, 2331–2412. [Google Scholar] [CrossRef] [PubMed]
- Guzinski, M.; Jarvis, J.M.; Perez, F.; Pendley, B.D.; Lindner, E.; De Marco, R.; Crespo, G.A.; Acres, R.G.; Walker, R.; Bishop, J. PEDOT(PSS) as Solid Contact for Ion-Selective Electrodes: The Influence of the PEDOT(PSS) Film Thickness on the Equilibration Times. Anal. Chem. 2017, 89, 3508–3516. [Google Scholar] [CrossRef] [PubMed]
- Guzinski, M.; Jarvis, J.M.; D’Orazio, P.; Izadyar, A.; Pendley, B.D.; Lindner, E. Solid-Contact pH Sensor without CO2 Interference with a Superhydrophobic PEDOT-C-14 as Solid Contact: The Ultimate “Water Layer” Test. Anal. Chem. 2017, 89, 8468–8475. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Chen, H.; Lv, D.; Li, W.; Liu, X.; Zhang, Q.; Yu, X.; Han, Y. Highly Conductive Inkjet-Printed PEDOT:PSS Film under Cyclic Stretching. ACS Appl. Mater. Interfaces 2023, 15, 28503–28515. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liang, R.; Wang, F.; Ding, J.; Qin, W. An all-solid-state potentiometric microelectrode for detection of copper in coastal sediment pore water. Sens. Actuators B Chem. 2019, 279, 369. [Google Scholar] [CrossRef]
- Szűcs, J.; Lindfors, T.; Bobacka, J.; Gyurcsányi, R.E. Ion-selective Electrodes with 3D Nanostructured Conducting Polymer Solid Contact. Electroanalysis 2016, 28, 778–786. [Google Scholar] [CrossRef]
- Wan Salim, W.W.A.; Hermann, A.C.; Zietchek, M.A.; Pfluger, J.E.; Park, J.H.; Ul Haque, A.; Sanober, F.; Porterfield, D.M. Ion-selective electrode biochip for applications in a liquid environment. In Proceedings of the International Conference for Innovation in Biomedical Engineering and Life Sciences, ICIBEL2015, Putrajaya, Malaysia, 6–8 December 2015; pp. 86–93. [Google Scholar]
- Zhang, W.; Wang, S.; Kang, D.; Xiong, Z.; Huang, Y.; Xiao, H.; Jia, X.; Zhao, W.; Wu, X.; Xu, Y. Study on the Performance of All-solid-state Copper ion-selective Electrode Based on PEDOT/PSS. In Proceedings of the SPIE—The International Society for Optical Engineering, Third International Conference on Sensors and Information Technology, ICSI 2023, Xiamen, China, 6–8 January 2023. [Google Scholar]
- Mamińska, R.; Dybko, A.; Wróblewski, W. All-solid-state miniaturised planar reference electrodes based on ionic liquids. Sens. Actuators B Chem. 2006, 115, 552–557. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Zeng, P.; Cao, Q. A Butyl Methacrylate Monolithic Column Prepared In-Situ on a Microfluidic Chip and its Applications. Sensors 2009, 9, 3437. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.; Buhlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997, 97, 3083–3132. [Google Scholar] [CrossRef] [PubMed]
- Akhond, M.; Ghaedi, M.; Tashkhourian, J. Development of a New Copper(II) Ion-selective Poly(vinyl chloride) Membrane Electrode Based on 2-Mercaptobenzoxazole. Bull. Korean Chem. Soc. 2005, 26, 882–886. [Google Scholar]
- Schwarz, J.; Trommer, K.; Mertig, M. Novel Screen-Printed All-Solid-State Copper(II)-Selective Electrode for Mobile Environmental Analysis. Am. J. Anal. Chem. 2016, 7, 525–532. [Google Scholar] [CrossRef]
Interfering Ions | Cu2+ Ion-Selective Electrode |
---|---|
Cu2+ | / |
Zn2+ | −3.11 |
Ni2+ | −2.34 |
Hg2+ | −2.81 |
Mg2+ | −3.73 |
Cd2+ | −2.04 |
Co2+ | −2.44 |
Cu2+ Concentration | Self-Made Potential Detection Device Test Voltage (mV) | Chenhua Workstation Test Voltage (mV) | ||||||
---|---|---|---|---|---|---|---|---|
ISE1 | ISE2 | ISE3 | ISE4 | ISE1 | ISE2 | ISE3 | ISE4 | |
1 × 10−5 mol·L−1 | 112.6 | 113.9 | 112.8 | 111.8 | 114.4 | 115.1 | 114.9 | 113.8 |
1 × 10−4 mol·L−1 | 130.9 | 131.7 | 129.6 | 132.5 | 131.9 | 133.0 | 131.3 | 133.3 |
1 × 10−3 mol·L−1 | 150.3 | 151.5 | 149.6 | 151.9 | 152.0 | 153.3 | 152.5 | 152.9 |
Samples | AAS-ISE | AAS | |
---|---|---|---|
Boiler water Cu2+ test value | 1.53 × 10−6 mol·L−1 | 97.16 μg·L−1 | 92.84 μg·L−1 |
1.47 × 10−6 mol·L−1 | 93.34 μg·L−1 | 87.81 μg·L−1 | |
1.45 × 10−6 mol·L−1 | 92.08 μg·L−1 | 89.67 μg·L−1 | |
Boiler water Cu2+ average | 94.19 μg·L−1 | 90.11 μg·L−1 | |
RSD | 4.54% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wang, S.; Kang, D.; Xiong, Z.; Huang, Y.; Ma, L.; Liu, Y.; Zhao, W.; Chen, S.; Xu, Y. Integrated Microfluidic Chip Technology for Copper Ion Detection Using an All-Solid-State Ion-Selective Electrode. Micromachines 2024, 15, 160. https://doi.org/10.3390/mi15010160
Zhang W, Wang S, Kang D, Xiong Z, Huang Y, Ma L, Liu Y, Zhao W, Chen S, Xu Y. Integrated Microfluidic Chip Technology for Copper Ion Detection Using an All-Solid-State Ion-Selective Electrode. Micromachines. 2024; 15(1):160. https://doi.org/10.3390/mi15010160
Chicago/Turabian StyleZhang, Wenpin, Shuangquan Wang, Dugang Kang, Zhi Xiong, Yong Huang, Lin Ma, Yun Liu, Wei Zhao, Shouliang Chen, and Yi Xu. 2024. "Integrated Microfluidic Chip Technology for Copper Ion Detection Using an All-Solid-State Ion-Selective Electrode" Micromachines 15, no. 1: 160. https://doi.org/10.3390/mi15010160
APA StyleZhang, W., Wang, S., Kang, D., Xiong, Z., Huang, Y., Ma, L., Liu, Y., Zhao, W., Chen, S., & Xu, Y. (2024). Integrated Microfluidic Chip Technology for Copper Ion Detection Using an All-Solid-State Ion-Selective Electrode. Micromachines, 15(1), 160. https://doi.org/10.3390/mi15010160