Design and Simulation of a System-in-Package Chip for Combined Navigation
Abstract
:1. Introduction
2. Design of the Combined Navigation Chip
3. Multi-Physics Simulation Analysis of the System-in-Package
3.1. Signal Integrity
3.2. Power Integrity
3.3. Electrical-Thermal-Mechanical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, L.; Elassaad, S.; Shi, Y.; Hu, Y.; Yao, W. System-in-Package: Electrical and Layout Perspectives. Found. Trends® Electron. Des. Autom. 2010, 4, 223–306. [Google Scholar] [CrossRef]
- Meyer, J. System in Package Design Case Study. Addit. Conf. Device Packag. HiTEC HiTEN CICMT 2015, 2015, 973–994. [Google Scholar] [CrossRef]
- Hu, Y.C.; Liang, Y.M.; Hu, H.P.; Tan, C.Y.; Shen, C.T.; Lee, C.H.; Hou, S.Y. CoWoS Architecture Evolution for Next Generation HPC on 2.5D System in Package. In Proceedings of the 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2023; pp. 1022–1026. [Google Scholar]
- Fang, Z.; Wu, B. Integrating High Frequency Radar Chip Using Laminated Substrate Transitions for System-In-Package Design. In Proceedings of the 2023 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 26–27 June 2023; pp. 1–3. [Google Scholar]
- Bocca, A.; Macii, A. Thermal modeling and analysis of a power ball grid array in system-in-package technology. Multiscale Multidiscip. Model. Exp. Des. 2022, 5, 31–41. [Google Scholar] [CrossRef]
- Kim, G.; Lim, D.; Lee, J.; Chang, I.; Pak, J.S.; Cho, Y.; Im, Y. Impact of System-in-Package in side-by-side discrete SoC-DRAM configurations on SI, PI and thermal performance. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1 June–4 July 2021; pp. 1805–1811. [Google Scholar]
- Ali, M.; Hassan, A.; Honarparvar, M.; Nabavi, M.; Audet, Y.; Sawan, M.; Savaria, Y. A Versatile SoC/SiP Sensor Interface for Industrial Applications: Implementation Challenges. IEEE Access 2022, 10, 24540–24555. [Google Scholar] [CrossRef]
- Oukaira, A.; Said, D.; Mellal, I.; Ettahri, O.; Zbitou, J.; Lakhssassi, A. Thermal camera for System-in-Package (SiP) technology: Transient thermal analysis based on FPGA and Finite Element Method (FEM). AEU Int. J. Electron. Commun. 2023, 172, 154980. [Google Scholar] [CrossRef]
- Fruehauf, P.; Munding, A.; Pressel, K.; Vogt, M.; Schwarz, P. Chip-package-board reliability of System-in-Package using laminate chip embedding technology based on Cu leadframe. In Proceedings of the 2018 7th Electronic System-Integration Technology Conference (ESTC), Dresden, Germany, 18–21 September 2018; pp. 1–7. [Google Scholar]
- Chen, Z.; Feng, Z.; Ruan, M.; Xu, G.; Liu, L. Effects of Moisture Diffusion on a System-in-Package Module by Moisture-Thermal-Mechanical-Coupled Finite Element Modeling. Micromachines 2022, 13, 1704. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, Y.; Zhao, Z.; Zhou, H. Parallel Multiphysics Simulation of Package Systems Using an Efficient Domain Decomposition Method. Electronics 2021, 10, 158. [Google Scholar] [CrossRef]
- Wu, X.; Cao, M.; Shan, G.; Yang, Y. A Fast Analysis Method of Multiphysics Coupling for 3-D Microsystem. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 2022, 41, 2372–2379. [Google Scholar] [CrossRef]
- Lee, H.; Im, Y.; Shin, Y. Comparative Study Of 3D Package Configurations in Power Delivery and Thermal Perspective. In Proceedings of the 2018 International Wafer Level Packaging Conference (IWLPC), San Jose, CA, USA, 23–25 October 2018; pp. 1–7. [Google Scholar]
- You, S.-H.; Jeon, S.; Oh, D.; Kim, K.; Kim, J.; Cha, S.-Y.; Kim, G. Advanced Fan-Out Package SI/PI/Thermal Performance Analysis of Novel RDL Packages. In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 29 May–1 June 2018; pp. 1295–1301. [Google Scholar]
- Xia, S.; Dogruoz, B.M.; Wang, Y.; Wu, S.; Bai, S.; Hwang, C.; Wu, Z. A Thermal-aware DC-IR Drop Analysis for 2.5D IC. In Proceedings of the 2023 IEEE Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMC + SIPI), Grand Rapids, MI, USA, 29 July–4 August 2023; pp. 670–675. [Google Scholar]
- Kim, S.K.; Oh, D.S.; Hwang, S.; Lee, B.W.; Cha, S.Y.; Kim, T.H. Electrical and Thermal Co-Analysis of Thermally Efficient SiP for High Performance Applications. In Proceedings of the 2019 Electrical Design of Advanced Packaging and Systems (EDAPS), Kaohsiung, Taiwan, 16–18 December 2019; pp. 1–3. [Google Scholar]
- Yu, D.; Wang, H.; Xu, J. Impact of Worst-Case Excitation for DDR interface Signal and Power Integrity Co-Simulation. J. Electron. Test. 2020, 36, 365–374. [Google Scholar] [CrossRef]
- George, S.S.; Sivanantham, S.; Manikant Ch, S.S. Design strategies for Signal Integrity, Power Integrity and EMI EMC issues in Computing boards and Systems. In Proceedings of the 2023 Joint Asia-Pacific International Symposium on Electromagnetic Compatibility and International Conference on ElectroMagnetic Interference & Compatibility (APEMC/INCEMIC), Bengaluru, India, 22–25 May 2023; pp. 1–4. [Google Scholar]
- George, S.S.; Sivanantham, S.; Pawar, S.; Vikram, R. Signal Integrity and Power Integrity Challenges in Embedded Computing Boards. In Proceedings of the 2018 15th International Conference on ElectroMagnetic Interference & Compatibility (INCEMIC), Bengaluru, India, 13–16 November 2018; pp. 1–4. [Google Scholar]
- Petrosyants, K.O.; Ryabov, N.I. Quasi-3D Thermal Simulation of Integrated Circuit Systems in Packages. Energies 2020, 13, 3054. [Google Scholar] [CrossRef]
- Oukaira, A.; Said, D.; Zbitou, J.; Lakhssassi, A. Transient Thermal Analysis of System-in-Package Technology by the Finite Element Method (FEM). In Proceedings of the 2022 International Conference on Microelectronics (ICM), Casablanca, Morocco, 4–7 December 2022; pp. 30–33. [Google Scholar]
- Pan, S.H.; Chang, N.; Hitomi, T. 3D-IC dynamic thermal analysis with hierarchical and configurable chip thermal model. In Proceedings of the 2013 IEEE International 3D Systems Integration Conference (3DIC), San Francisco, CA, USA, 2–4 October 2013; pp. 1–8. [Google Scholar]
- Oukaira, A.; Said, D.; Zbitou, J.; Lakhssassi, A. Advanced Thermal Control Using Chip Cooling Laminate Chip (CCLC) with Finite Element Method for System-in-Package (SiP) Technology. Electronics 2023, 12, 3154. [Google Scholar] [CrossRef]
- Tsai, M.Y.; Liu, C.M.; Wang, Y.W.; Liu, H.Y. Effects of Metal Frame and Adhesive on Thermally-Induced Warpage and Stress of 2.5D Packages: Experimental and Numerical Studies. IEEE Trans. Device Mater. Reliab. 2018, 18, 450–455. [Google Scholar] [CrossRef]
- Rajmane, P.; Dhandapani, K.; Schwarz, M.; Syed, A. Investigation of the Factors Affecting the Warpage Prediction of Multi-Chip Package. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1 June–4 July 2021; pp. 1514–1520. [Google Scholar]
- Hsu, J.; Yang, A.; Jeong, Y.; Ahn, B.; Koyama, T.; Oi, K.; Lee, J.; Horie, T.; Tsuriya, M. SiP module warpage characterization and simulation study. In Proceedings of the 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Mie, Japan, 17–21 April 2018; pp. 7–12. [Google Scholar]
- Zhang, K.; Lin, V.; Lai, D.; Wang, Y.P. Warpage and Stress Simulation Analysis of Substrate on Substrate Antenna in Package (AiP) for 5G CPE Application. In Proceedings of the 2022 International Conference on Electronics Packaging (ICEP), Sapporo, Japan, 11–14 May 2022; pp. 197–198. [Google Scholar]
- Yan, Z.; Zhong, C.; Lou, L.; Yu, S.; Hu, Z.; Sun, R. Warpage Simulation and Analysis for FOWLP with Metal Carrier. In Proceedings of the 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China, 10–13 August 2022; pp. 1–6. [Google Scholar]
- Niu, Y.; Wang, W.; Wang, Z.; Dhandapani, K.; Schwarz, M.; Syed, A. Warpage Variation Analysis and Model Prediction for Molded Packages. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 819–824. [Google Scholar]
- Lee, K.; Kim, M.S.; Kim, J.; Kim, S.; Lee, D.; Jung, K. Improvement of package warpage through substrate and EMC optimization. In Proceedings of the 2018 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 11–12 March 2018; pp. 1–4. [Google Scholar]
- Yan, P.; Jiang, J.; Tang, Y.; Zhang, F.; Xie, D.; Wu, J.; Liu, J.; Liu, J. Dynamic Adaptive Low Power Adjustment Scheme for Single-Frequency GNSS/MEMS-IMU/Odometer Integrated Navigation in the Complex Urban Environment. Remote Sens. 2021, 13, 3236. [Google Scholar] [CrossRef]
- Wang, C.; Chen, X.; Zhang, N.; Wang, J.; Jiao, Z.; Zhong, Y. Research on the Algorithm of Combined GNSS/SINS Navigation System based on Adaptive UKF. In Proceedings of the 2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT), Qingdao, China, 21–24 July 2023; pp. 535–540. [Google Scholar]
MYER NAME | THICKNESS () | MYER NAME | |
---|---|---|---|
Top solder mask | 20 | ±10 | AUS308 1 |
M1 (Top) | 15 (Min) | 15 (Min) | Copper |
PP | 45 | ±15 | GHPL-830NX(A) 2 |
M2 | 20 | ±5 | Copper |
CORE | 60 | ±15 | HL832NX(A) 2 |
M3 | 20 | ±5 | Copper |
PP | 45 | ±15 | GHPL-830NX(A) |
M4 (Bottom) | 15 (Min) | 15 (Min) | Copper |
Bottom solder mask | 20 | ±10 | AUS308 |
Finish | 260 | ±40 |
No. | Resonance Freq (MHz) | Q Factor | |
---|---|---|---|
1 | 0.275921 | +0.703371i | 0.196142 |
2 | 1.100444 | +1.408909i | 0.390531 |
3 | 1.636053 | +1.851072i | 0.44192 |
4 | 1.896135 | +2.526094i | 0.37531 |
5 | 1.911442 | +2.527866i | 0.378074 |
6 | 2.068185 | +2.535850i | 0.407789 |
7 | 2.076808 | +2.443693i | 0.424932 |
8 | 2.139904 | +2.188735i | 0.488845 |
9 | 3.528381 | +3.044923i | 0.579387 |
Power Net | DC Voltage Drop | Percent (<2%) |
---|---|---|
1.8 V-MCU | 17.6 mV | Pass |
1 V-MCU | 19.2 mV | Pass |
3.3 V-MCU | 17.5 mV | Pass |
3.3 V-WD_A | 7.1 mV | Pass |
3.3 V-WD_B | 6.1 mV | Pass |
3.3 V-IMU | 7.6 mV | Pass |
3.3 V-FLASH | 20.7 mV | Pass |
Name | Main Material | Key Parameter |
---|---|---|
Heat sink | Copper | Height: 10 mm; Fin Width: 1 mm; Fin Pitch: 2 mm |
SiP chip | Molding | Height: 1.76 mm; Width: 20 mm; Length: 20 mm |
Test PCB | Copper, FR4 | Height: 19.6 mm; Width: 114.5 mm; Length: 101.5 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Shi, G.; Jin, Y. Design and Simulation of a System-in-Package Chip for Combined Navigation. Micromachines 2024, 15, 167. https://doi.org/10.3390/mi15020167
Yang Y, Shi G, Jin Y. Design and Simulation of a System-in-Package Chip for Combined Navigation. Micromachines. 2024; 15(2):167. https://doi.org/10.3390/mi15020167
Chicago/Turabian StyleYang, Yang, Guangyi Shi, and Yufeng Jin. 2024. "Design and Simulation of a System-in-Package Chip for Combined Navigation" Micromachines 15, no. 2: 167. https://doi.org/10.3390/mi15020167
APA StyleYang, Y., Shi, G., & Jin, Y. (2024). Design and Simulation of a System-in-Package Chip for Combined Navigation. Micromachines, 15(2), 167. https://doi.org/10.3390/mi15020167