Fabricating Ultra-Narrow Precision Slit Structures with Periodically Reducing Current Over-Growth Electroforming
Abstract
:1. Introduction
2. Principle and Simulation Analysis of PRC Over-Growth EF
2.1. Principle of PRC Over-Growth EF
2.2. Simulation Analysis
2.2.1. Simulations
- (1)
- Boundary effects are neglected and the potentials at each electrode surface are equal.
- (2)
- The electrolyte is isotropic and its conductivity is constant over the confined area.
- (3)
- Concentration polarization is not considered, and only the mass transport of nickel cations associated with electrodeposition is considered in the simulations. The anode boundary is set as an invariant boundary, while the cathode boundary is a geometric deformation boundary.
2.2.2. Results and Discussion
- (1)
- Flow field distribution
- (2)
- Cathodic current density distribution
- (3)
- Ion concentration distribution
3. Experimental Study
3.1. Materials and Methods
3.2. Results and Analysis
3.2.1. Morphology and Surface Quality
3.2.2. Geometrical Accuracy
4. Conclusions
- (1)
- PRC over-growth EF is significantly effective and advantageous for fabricating ultranarrow precision slits, since it can maintain a constantly favorable condition for the total electrodeposition process.
- (2)
- With PRC over-growth EF, slits with a width of down to 5 ± 0.1 μm and a surface roughness of less than 62.8 nm can be easily achieved.
- (3)
- With PRC over-growth EF, the reduction in the current is carried out preferentially in terms of the consumed Coulomb quantity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Esmaeili, S.; Talebi, M.; Pourdeilami, A.; Farsangi, E.N. Innovative cost-effective pendulum tiltmeter based on the moiré technique. Opt. Eng. 2023, 62, 054101. [Google Scholar] [CrossRef]
- Sidoli, M.; Magnani, G.; Fornasini, L.; Scaravonati, S.; Morenghi, A.; Vezzoni, V.; Bersani, D.; Bertoni, G.; Gaboardi, M.; Riccò, M.; et al. Defective graphene decorated with TiO2 nanoparticles as negative electrode in Li-ion batteries. J. Alloys Compd. 2023, 958, 170420. [Google Scholar] [CrossRef]
- Richard, B.; Thomas, S.A.; Reddy, M.A.; Pallavolu, M.R.; Cherusseri, J. Minireview on Fluid Manipulation Techniques for the Synthesis and Energy Applications of Two-Dimensional MXenes: Advances, Challenges, and Perspectives. Energy Fuels 2023, 37, 6999–7013. [Google Scholar] [CrossRef]
- Karagoz, E.; Altaf, C.T.; Yaman, E.; Yildirim, I.D.; Erdem, E.; Celebi, C.; Fidan, M.; Sankir, M.; Sankir, N.D. Flexible Metal/Semiconductor/Metal Type Photodetectors Based on Manganese Doped ZnO Nanorods. J. Alloys Compd. 2023, 959, 170474. [Google Scholar] [CrossRef]
- Moyo, D.S.; van der Merwe, E.M.; Rademeyer, M.; Malan, F.P.; Atanasova, M.T.; Mapossa, A.B.; Focke, W.W. Characterizing the thermal phase behaviour of fipronil polymorphs. J. Therm. Anal. Calorim. 2023, 148, 6761–6777. [Google Scholar] [CrossRef]
- Qin, L.; Huang, T.; Cui, H.; Cheng, M.; Wei, G.; Liao, F.; Xiong, W.; Jiang, H.; Zhang, J.; Fan, H. A fluorescence-electrochemiluminescence dual-mode sensor based on a” switch” system for highly selective and sensitive K-ras gene detection. Biosens. Bioelectron. 2023, 235, 115385. [Google Scholar] [CrossRef] [PubMed]
- Morais, A.T.D.B.; Morais, S.T.; Feitor, J.F.; Santos, W.G.; Gomes da Silva Catunda, L.; Walkling-Ribeiro, M.; Ahrne, L.; Cardoso, D.R. Impact of Physicochemical Modifications in Casein Promoted by UV-C on the Peptide Profile of Gastric Digestion and the Transepithelial Transport of Peptides. J. Agric. Food Chem. 2023, 71, 7495–7507. [Google Scholar] [CrossRef] [PubMed]
- Hanson, N.N.; Wurster, C.M.; EIMF; Todd, C.D. Comparison of secondary ion mass spectrometry and micromilling/continuous flow isotope ratio mass spectrometry techniques used to acquire intra-otolith δ18O values of wild Atlantic salmon (Salmo salar). Rapid Commun. Mass Spectrom. 2010, 24, 2491–2498. [Google Scholar] [CrossRef]
- Lu, X.; Cong, C.; Hou, P.; Xv, K.; Liang, S.Y. Improved Cutting Force Modelling in Micro-Milling Aluminum Alloy LF 21 Considering Tool Wear. Appl. Sci. 2022, 12, 5357. [Google Scholar] [CrossRef]
- Vladisavljević, G.T.; Khalid, N.; Neves, M.A.; Kuroiwa, T.; Nakajima, M.; Uemura, K.; Ichikawa, S.; Kobayashi, I. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery. Adv. Drug Deliv. Rev. 2013, 65, 1626–1663. [Google Scholar] [CrossRef]
- Chern, G.-L.; Wu, Y.-J.E.; Cheng, J.-C.; Yao, J.-C. Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Precis. Eng. 2007, 31, 122–129. [Google Scholar] [CrossRef]
- Campanelli, S.L.; Casalino, G.; Ludovico, A.D.; Bonserio, C. An artificial neural network approach for the control of the laser milling process. Int. J. Adv. Manuf. Technol. 2013, 66, 1777–1784. [Google Scholar] [CrossRef]
- Parandoush, P.; Hossain, A. A review of modeling and simulation of laser beam machining. Int. J. Mach. Tools Manuf. 2014, 85, 135–145. [Google Scholar] [CrossRef]
- Kravchenko, K.; Feuchtgruber, H.; Riccardi, A. A new versatile infrared facility at the VLT. Nat. Astron. 2023, 7, 504. [Google Scholar] [CrossRef]
- Chen, L.; Cai, L.; Huang, E.; Zhou, Y.; Yue, T.; Cao, X. A notch-mask and dual-prism system for snapshot spectral imaging. Opt. Lasers Eng. 2023, 165, 107544. [Google Scholar] [CrossRef]
- Kaur, A.; Ribton, C.; Balachandaran, W. Electron beam characterisation methods and devices for welding equipment. J. Mater. Process. Technol. 2015, 221, 225–232. [Google Scholar] [CrossRef]
- Qu, N.S.; Xu, K.; Zeng, Y.B.; Yu, Q. Enhancement of the homogeneity of micro slits prepared by wire electrochemical micromachining. Int. J. Electrochem. Sci. 2013, 8, 12163–12171. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Sun, P.; Ning, Z.; Wang, L. Study on Model and Experimental of Laser Scribing Parameter of Maskant in Chemical Milling for Aerospace Applications. Appl. Sci. 2022, 12, 2914. [Google Scholar] [CrossRef]
- Chow, H.M.; Yan, B.H.; Huang, F.Y.; Hung, J.C. Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining. J. Mater. Process. Technol. 2000, 101, 95–103. [Google Scholar] [CrossRef]
- Yang, C.Z.; Guo, W.; Wang, Y.F.; Hu, L.H.; Wang, J.; Luo, J.M.; Yao, X.H.; Liu, S.; Tao, L.T.; Sun, L.L.; et al. Reduction in gefitinib resistance mediated by Yi-Fei San-Jie pill in non-small cell lung cancer through regulation of tyrosine metabolism, cell cycle, and the MET/EGFR signaling pathway. J. Ethnopharmacol. 2023, 314, 116566. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Yokoi, A.; Hashimura, M.; Oguri, Y.; Konno, R.; Matsumoto, T.; Tochimoto, M.; Nakagawa, M.; Ishibashi, Y.; Ito, T.; et al. Nucleobindin-2 mediates TGF-β1-driven phenotypes in ZEB1-high uterine carcinosarcoma. Am. J. Pathol. 2023, 193, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- de Souza Niero, A.L.; Possolli, N.M.; da Silva, D.F.; Demétrio, K.B.; Zocche, J.J.; de Souza, G.M.S.; Dias, J.F.; Vieira, J.L.; Barbosa, J.D.V.; Soares, M.B.P.; et al. Composite beads of alginate and biological hydroxyapatite from poultry and mariculture for hard tissue repair. Ceram. Int. 2023, 49, 25319–25332. [Google Scholar] [CrossRef]
- Aramini, A.; Bianchini, G.; Lillini, S.; Tomassetti, M.; Pacchiarotti, N.; Canestrari, D.; Cocchiaro, P.; Novelli, R.; Dragani, M.C.; Palmerio, F.; et al. Ketoprofen, lysine and gabapentin co-crystal magnifies synergistic efficacy and tolerability of the constituent drugs: Pre-clinical evidences towards an innovative therapeutic approach for neuroinflammatory pain. Biomed. Pharmacother. 2023, 163, 114845. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.; Kumar, A. Recent advances in assessment methods and mechanism of microbe-mediated chlorpyrifos remediation. Environ. Res. 2022, 214, 114011. [Google Scholar] [CrossRef] [PubMed]
- Venkitakrishnan, P.; Philip, J.; Krishnamurthy, R. An assessment of stresses in thin walled welded tubes through hole drilling and sectioning methods. J. Mater. Process. Technol. 2007, 185, 228–232. [Google Scholar] [CrossRef]
- Hülsenberg, D.; Harnisch, A.; Bismarck, A. Joining Methods for Glass Based Microdevices. In Microstructuring of Glasses; Springer: Berlin/Heidelberg, Germany, 2008; pp. 263–278. [Google Scholar]
- Huang, J.T.; Lee, K.Y.; Wu, C.S.; Lin, C.Y.; Shih, S.H. Using Micro-Electroforming and Micro-Assembly Technology to Fabricate Vertical Probe Card. In Proceedings of the 2006 International Conference on Electronic Materials and Packaging, Kowloon, China, 11–14 December 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 1–5. [Google Scholar]
- Xia, H.; Zhao, G.; Li, L.; Hu, M.; He, N.; Ochengo, D. Fabrication of high aspect ratio microgroove on Ti6Al4V by laser-induced oxidation assisted micro milling. J. Manuf. Process. 2019, 45, 419–428. [Google Scholar] [CrossRef]
- Chow, H.M.; Yan, B.H.; Huang, F.Y. Micro slit machining using electro-discharge machining with a modified rotary disk electrode (RDE). J. Mater. Process. Technol. 1999, 91, 161–166. [Google Scholar] [CrossRef]
- Kim, B.H.; Ryu, S.H.; Choi, D.K.; Chu, C.N. Micro electrochemical milling. J. Micromech. Microeng. 2004, 15, 124. [Google Scholar] [CrossRef]
- Zhu, B.; Zhu, D.; Zeng, Y.; Wang, S. Pilot study on electrolytic wire cutting processing technology. China Mech. Eng. 2010, 21, 963–967. [Google Scholar]
- Zhang, Y.; Ming, P.; Li, R.; Qin, G.; Zhang, X.; Yan, L.; Li, X.; Zheng, X. Numerical analysis and experimental study on fabrication of high aspect ratio tapered ultrafine holes by over-growth electroforming process. Micromachines 2019, 10, 824. [Google Scholar] [CrossRef]
- Zhang, J.; Ming, P.; Zhang, X.; Qin, G.; Yan, L.; Zhao, X.; Zheng, X. Facile Fabrication of Highly Perforated Hollow Metallic Cylinder with Changeable Micro-Orifices by Electroforming-Extrusion molding Hybrid Process. Micromachines 2020, 11, 70. [Google Scholar] [CrossRef] [PubMed]
Notation | Description | Property |
---|---|---|
Γ1 | Anode | = (0.75–1), I3 = 0.5 A |
Γ2 | Electrolyte inlet | Vin = 0.2 m/s |
Γ3 | Cathode | |
Γ4 | Photolithography mask | No flux |
Γ5 | Electrolyte outlet | - |
Items (Unit) | Value |
---|---|
Nickel sulfamate (Ni(SO3NH2)2·4H2O)/(g/L) | 500 |
Nickel chloride (NiCl2·6H2O)/(g/L) | 6–10 |
boric acid (H3BO3)/(g/L) | 30–40 |
Temperature (°C) | 50–55 |
pH | 3.8–4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhang, X.; Ming, P.; Li, Y.; Wang, W.; Zhang, Y.; Li, Z.; Li, L.; Xiao, Y.; Guo, X.; et al. Fabricating Ultra-Narrow Precision Slit Structures with Periodically Reducing Current Over-Growth Electroforming. Micromachines 2024, 15, 76. https://doi.org/10.3390/mi15010076
Yang X, Zhang X, Ming P, Li Y, Wang W, Zhang Y, Li Z, Li L, Xiao Y, Guo X, et al. Fabricating Ultra-Narrow Precision Slit Structures with Periodically Reducing Current Over-Growth Electroforming. Micromachines. 2024; 15(1):76. https://doi.org/10.3390/mi15010076
Chicago/Turabian StyleYang, Xiaohong, Xinmin Zhang, Pingmei Ming, Yuntao Li, Wei Wang, Yunyan Zhang, Zongbin Li, Lunxu Li, Youping Xiao, Xiaoyi Guo, and et al. 2024. "Fabricating Ultra-Narrow Precision Slit Structures with Periodically Reducing Current Over-Growth Electroforming" Micromachines 15, no. 1: 76. https://doi.org/10.3390/mi15010076
APA StyleYang, X., Zhang, X., Ming, P., Li, Y., Wang, W., Zhang, Y., Li, Z., Li, L., Xiao, Y., Guo, X., & Yang, Z. (2024). Fabricating Ultra-Narrow Precision Slit Structures with Periodically Reducing Current Over-Growth Electroforming. Micromachines, 15(1), 76. https://doi.org/10.3390/mi15010076